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Abstract 
Anomaly segmentation in high spatial resolution (HSR) re-
mote sensing imagery is aimed at segmenting anomaly pat-
terns of the earth deviating from normal patterns, which plays 
an important role in various Earth vision applications. How-
ever, it is a challenging task due to the complex distribution 
and the irregular shapes of objects, and the lack of abnormal 
samples. To tackle these problems, an anomaly segmentation 
model based on pixel descriptors (ASD) is proposed for 
anomaly segmentation in HSR imagery. Specifically, deep 
one-class classification is introduced for anomaly segmenta-
tion in the feature space with discriminative pixel descriptors. 
The ASD model incorporates the data argument for generat-
ing virtual abnormal samples, which can force the pixel de-
scriptors to be compact for normal data and meanwhile to be 
diverse to avoid the model collapse problems when only pos-
itive samples participated in the training. In addition, the 
ASD introduced a multi-level and multi-scale feature extrac-
tion strategy for learning the low-level and semantic infor-
mation to make the pixel descriptors feature-rich.  The pro-
posed ASD model was validated using four HSR datasets and 
compared with the recent state-of-the-art models, showing its 
potential value in Earth vision applications. 

Introduction  
Anomaly segmentation is aimed at segmenting the anomaly 
patterns which deviate from the normal patterns (Pimentel 
et al. 2014; Pang et al. 2021). Due to the lack of abnormal 
samples, anomaly segmentation is a challenging task, but 
plays an important role in many computer vision applica-
tions, including medical analysis (Fernando et al. 2021), in-
dustrial defect detection (Bergmann et al. 2019), video sur-
veillance (Liu, Li, and Poczos 2018), and environmental 
monitoring (Miau and Hung 2020). 
 Anomaly segmentation in high spatial resolution (HSR) 
remote sensing images (e.g., Figure 1) is a powerful tool for 
environmental monitoring (Miau and Hung 2020; Wang et 
al. 2019). Despite this, few related works have focused on 
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anomaly segmentation in HSR imagery because of the 
unique characteristics when compared to the industrial and 
medical images used in most anomaly segmentation tasks, 
which have a regular structure. The objects in HSR images 
typically have a more complex spatial distribution and large 
radiation differences within the same class. Furthermore, 
since HSR images can be captured in different angles and 
heights, the objects always have multiple scales and show 
rotation invariance. These characteristics make anomaly 
segmentation for HSR images a challenging task. 
 The mainstream anomaly segmentation models detect 
anomalies in the image space, where the anomaly score is 
computed based on the image pixel values. Typical exam-
ples are the autoencoder (AE)-based models (Zavrtanik, 
Kristan, and Skoˇcaj 2021; Gong et al. 2019) and the gener-
ative adversarial network (GAN)-based models (Ngoetal. 
2019; Zenatietal. 2018b). AE-based models assume that 
normal samples can be reconstructed more easily than the 
anomalous ones and the reconstruction error indicates the 

Code is available at https://github.com/Jingtao-Li-CVer/ASD. 
 

 
 
Figure 1: Anomaly segmentation example for HSR re-
mote sensing images using proposed model. In the forest 
scene, the common forest pattern is considered as normal, 
and the abnormal objects such as diseased trees (the first 
row) and the house in the forest (the second row) are iden-
tified as anomalies. 
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anomaly segmentation score (Pang et al. 2021). However, 
the low-level reconstruction error has been shown to focus 
on the pixel-wise error, resulting in abnormal samples also 
being reconstructed, especially when the normal distribution 
is complex. (Fei et al. 2020; Gong et al. 2019; Zong et al. 
2018). GAN-based models detect anomalies from the gen-
eration performance (Akcay, Atapour-Abarghouei, and 
Breckon 2018; Ngo et al. 2019; Xia et al. 2022), where the 
superior capability in generating image data also empowers 
the detection of abnormal samples (Pang et al. 2021). In 
spite of this, the complex distribution of HSR images can 
make the generator generate data instances that are out of 
the manifold of normal instances (Pang et al. 2021). 
 Differing from the AE-based and GAN-based models, 
deep one-class classification (OCC)-based methods detect 
the anomalies in the feature space (Shi, Yang, and Qi 2021; 
Lei et al. 2021; Zhao et al. 2022; Li et al. 2022), where the 
anomaly score is computed based on the extracted image de-
scriptors. These methods aim to learn discriminative de-
scriptors in the training stage and compute the anomaly 
score in the feature space using a measurement such as the 
Mahalanobis or Euclidean distance (Reiss et al. 2021; Ruff 
et al. 2018; Shi, Yang, and Qi 2021). Because deep OCC-
based methods focus on semantic features rather than low-
level pixel errors, it is more suitable to deal with the anom-
aly segmentation task in HSR imagery which has complex 
distribution. However, two barriers exist when applying ex-
isting methods directly. (i) Due to the lack of abnormal sam-
ples, the model training only uses normal samples and is op-
timized to be compact (Ruff et al. 2018; Chalapathy, Menon, 
and Chawla 2018), which can easily result in the model col-
lapse problem (Reiss et al. 2021). (ii) The anomalies in HSR 
imagery have rich low-level (e.g., texture) and high-level 
(e.g., semantic) features, which are both important for the 
anomaly segmentation task and real application. Although 
the current deep OCC models can capture useful semantic 
features, they perform suboptimally than models detecting 
in the image space for samples with regular structures (Li et 
al. 2021), because low-level features are mostly forgotten in 
feature space. 
 In this paper, we tackle the two problems for the anomaly 
segmentation task using HSR images. A novel anomaly seg-
mentation model based on pixel descriptors (ASD) is pro-
posed. (i) In addition to considering the compact property of 
the obtained descriptors, the ASD model encourages de-
scriptors to be diverse by increasing the descriptor distance 
between the original image and the transformed image with 
the use of data augmentation techniques. The transformed 
descriptors act as anomalies, to some extent, which en-
hances the anomaly detection ability and prevents simulta-
neous model collapse. (ii) To make the descriptor feature-
rich, a descriptor at different scales is fused for each pixel, 
and an auxiliary reconstruction head is designed to force the 

descriptor to remember the low-level features. Compact, di-
verse, and feature-rich property optimizes the model to-
gether from the perspective of the feature distance and fea-
ture quantity. ASD sets the first baseline for the anomaly 
segmentation task in HSR imagery. 
 The ASD model was validated on four HSR datasets: the 
DeepGlobe land-cover segmentation dataset, the Agricul-
ture-Vision agriculture pattern segmentation dataset, the 
Landslide4Sense landslide detection dataset, and the forest 
anomaly detection dataset (FAS, made by ourselves). The 
ASD model showed an obvious superiority over the recent 
state-of-the-art anomaly segmentation models (with an area 
under the curve (AUC) improvement of 5–10 points in most 
cases). The results obtained on the Landslide4Sense and 
FAS datasets confirmed the great application potential of the 
ASD model in disaster detection and forest monitoring. 

Related Work 
AE-based models are always composed of an encoding and 
decoding network, with the aim being to reconstruct the 
original input data (Pimentel et al. 2014). Hawkins et al. 
(2022) first introduced the AE into the anomaly detection 
field, where the features learned in the latent space can be 
used to distinguish normal and anomalous data. The recon-
struction error is considered as the anomaly degree and the 
mean square error (MSE) is adopted as the loss function in 
most studies (Pang et al. 2021). To promote the performance, 
Pathak et al. (2016) blanked the input image randomly and 
forced the model to reconstruct the damaged area. Similarly, 
the ARNet model was proposed, which erases some input 
attributes and reformulates the problem as a restoration task 
(Fei et al. 2020). Recently, Zavrtanik et al. (2021) cast the 
reconstruction problem as an inpainting problem and recon-
structed the image from partial inpaintings. However, the 
extracted low-level features can be shared by both normal 
and anomalous data (Fei et al. 2020) when dealing with 
complex HSR images. 
GAN-based models aim to generate the image rather than 
reconstruct it. As one of the early GAN-based models, the 
AnoGAN model assumes that the learned latent space can 
represent normal samples well, but not the anomalous sam-
ples (Schlegl et al. 2017). Given a test image, the difference 
between the regenerated image obtained using the searched 
latent feature and the test image is considered as the anom-
aly degree. The famous GANomaly model improved the 
generator architecture from a decoder to an encoder-decoder 
encoder design and used high-level features to assist com-
puting the anomaly score (Akcay, Atapour-Abarghouei, and 
Breckon 2018). GAN-based models have demonstrated su-
perior capabilities in generating image data, which also em-
powers the detection of abnormal samples (Pang et al. 2021). 
In spite of this, the complex distribution of HSR images can 
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make the generator generate data instances that are out of 
the manifold of normal instances (Pang et al. 2021). 
One-class classification models are also used in some 
anomaly segmentation works (Pang et al. 2021). One of their 
greatest advantages over the AE-based and GAN-based 
models is that the OCC models detect anomalies in the fea-
ture space with high-level semantic information. They first 
divide an image into many patches and then learn the corre-
sponding representations. The anomaly score is computed in 
the feature space using a measurement such as the Ma-
halanobis or Euclidean distance (Reiss et al. 2021; Ruff et 
al. 2018; Shi, Yang, and Qi 2021). Most OCC models are 
based on the principle of one-class support vector machine 
(OCSVM) (Sch¨olkopf et al. 1999; Andrews, Morton, and 
Griffin 2016) or support vector data description (SVDD) 
(Tax and Duin 1999; Chalapathy, Menon, and Chawla 2018; 
Ruff et al.2018). However, these models mainly consider 
the compact property of the obtained one class features, re-
sulting in the model collapse problem (Reiss et al. 2021), 
and they lack consideration of the low-level structural fea-
tures. 

Methodology 
Overview. This section describes the core principles of the 
proposed ASD model. The overall workflow of the ASD 
model is shown in Section 3.1, which includes two steps: 
descriptor extracting and anomaly score computation. To 
extract the ideal descriptors, descriptor learning is the most 
important part and is described detailed in Section 3.2. The 
computation method of the anomaly score is given in Sec-
tion 3.3. 

Overall Workflow of The ASD Model 
Given an HSR image 𝑿𝑿 with size 𝐻𝐻 × 𝑊𝑊 × 𝐵𝐵, where 𝐻𝐻, 𝑊𝑊, 
and 𝐵𝐵  are the height, width and bands of the image, the 
anomaly segmentation task can be viewed as a mapping 
function 𝑓𝑓 from the 𝑿𝑿 to the anomaly map 𝑨𝑨 with size 𝐻𝐻 ×
𝑊𝑊. Each pixel in the anomaly map is in the range [0,1]. Gen-
erally speaking, the higher the value in the anomaly map, 
the higher the anomaly degree. 
 The ASD model separates the function 𝑓𝑓 into two steps 
and the overall workflow is shown in Figure 2. The first step 
𝑓𝑓1 extracts the dense descriptor cube 𝑫𝑫 for each image pixel, 
which is the core part and also the training focus in the ASD 
model. The descriptors are expected to contain important 
visual characteristics for the anomaly segmentation task. To 
incorporate the pixel context and obtain fine pixel corre-
spondence, the patch-based paradigm is chosen to compute 
the descriptor 𝐹𝐹 for the center pixel 𝑥𝑥. In this step, the 𝐻𝐻 ×
𝑊𝑊 patches form the input samples and a descriptor cube 𝑫𝑫 
with size 𝐻𝐻 × 𝑊𝑊 × 𝐿𝐿  is output, where 𝐿𝐿  is the descriptor 
length. 

 The second step 𝑓𝑓2 outputs the anomaly map based on the 
trained descriptor encoders in the first step. Specifically, the 
trained descriptors of the training samples are modeled as a 
multivariate Gaussian Distribution (MGD) (Guimaraes et al. 
2018) by the Gaussian Density Estimate (GDE). For the test 
descriptor, its Mahalanobis distance from the MGD is used 
to measure the anomaly score. The formal mapping of 𝑓𝑓, 𝑓𝑓1, 
and 𝑓𝑓2 is shown in Eqs. (1-3). 

𝑓𝑓: 𝑿𝑿 → 𝑨𝑨 (1) 

𝑓𝑓1 ∶  𝑿𝑿 → 𝑫𝑫 (2) 
𝑓𝑓2 ∶  𝑫𝑫 → 𝑨𝑨 (3) 

Ideal Descriptors Learning 
The descriptors obtained in the first step (as mentioned in 
Section 3.1) are expected to contain important visual char-
acteristics for the anomaly segmentation task. To achieve 
this aim, ideal descriptors are optimized using three condi-
tions from the characteristics of the anomaly segmentation 
task and HSR images. 

Compact. One of the characteristics of anomaly segmen-
tation is that only normal samples are used in the training 
stage. In other words, all the training samples are of the same 
class, which naturally results in compact visual descriptors 
in the feature space. This compactness is also a useful su-
pervised signal for the anomaly segmentation task.  

To keep 𝑫𝑫 compact, an enclosing hypersphere around all 
the pixel descriptors is constructed, which is motivated by 
the deep SVDD method (Ruff et al. 2018). We let 𝑅𝑅 be the 
hypersphere radius and 𝐶𝐶 be the center. The 𝐿𝐿1 loss (Eq. (4)) 
aims to minimize the hypersphere radius and the distance 
from the obtained pixel descriptors to the center 𝐶𝐶, where 
the parameter 𝜆𝜆 controls the trade-off between the size of 

 
 
Figure 2: The overall workflow of the ASD model, which 
includes two steps. In the first step, the ASD model ex-
tracts a descriptor for each pixel with the descriptor ex-
tractor. In the second step, the descriptors for normal 
scenes are modeled as the Gaussian distribution, and the 
Mahalanobis distance between the test descriptor and the 
modeled distribution is considered to measure the anom-
aly score. 
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the hypersphere and the number of surrounded descriptors. 
The maximum distance between 𝐶𝐶 and 𝐹𝐹 in 𝑫𝑫 is chosen to 
compute the radius 𝑅𝑅. Compared to using the mean value, 
this setting helps the model focus on special normal samples, 
rather than just considering them as noise. 

𝐿𝐿1(𝑫𝑫) = 𝑅𝑅2 + 𝜆𝜆mean{0, max{‖𝐹𝐹 − 𝐶𝐶‖2 − 𝑅𝑅2 | 𝐹𝐹 ∈ 𝑫𝑫}} (4) 

Diverse. Compactness is the first basic condition. How-
ever, the model can easily collapse if only a compactness 
constraint used. In other words, the model would map all the 
input samples into the same point. This “cheating” makes 
the model lose the anomaly detection ability. To deal with 
this problem, the diverse condition is necessary, which 
stresses that a different pixel 𝑥𝑥 obtains different values of 𝐹𝐹. 

The key consideration to keeping the descriptors diverse 
is to keep the model sensitive to the input sample change. 
Considering the fact that training images are always anom-
aly free and real negative samples are difficult to obtain, data 
augmentation techniques, such as the channel shuffle oper-
ation, are used to generate negative samples. Formally, the 
augmentation operation set 𝑆𝑆𝑎𝑎 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛} contains 𝑛𝑛 
kinds of different augmentation operations. For the original 
image 𝑿𝑿, the obtained image descriptor cube 𝑫𝑫 can be seen 
as a positive one. Then, after applying the operations from 
𝑆𝑆𝑎𝑎 on 𝑿𝑿 in turn, 𝑿𝑿𝑇𝑇 can be obtained and the corresponding 
cube 𝑫𝑫𝑇𝑇 is considered to be a negative sample. Eqs. (5-6) 
formally express the above process. 

𝑿𝑿𝑇𝑇 = 𝐴𝐴𝑛𝑛(… (𝐴𝐴2(𝐴𝐴1(𝑿𝑿𝑇𝑇))) (5) 

𝑫𝑫 = 𝑓𝑓1(𝑿𝑿), 𝑫𝑫𝑇𝑇= 𝑓𝑓1(𝑿𝑿𝑇𝑇) (6) 

Both 𝑫𝑫 and 𝑫𝑫𝑇𝑇 have the same shape 𝐻𝐻 × 𝑊𝑊 × 𝐿𝐿. The diver-
sity loss is defined as the average pixel descriptor difference 
between 𝑫𝑫 and 𝑫𝑫𝑇𝑇, as shown in Eq. (7). With the 𝐿𝐿2 loss, 
the model is encouraged to increase the sensitivity to the in-
put difference. 

𝐿𝐿2(𝑫𝑫,𝑫𝑫𝑇𝑇) = 1/{
1

𝐻𝐻 × 𝑊𝑊���𝑫𝑫𝑖𝑖𝑖𝑖 − 𝑫𝑫𝑖𝑖𝑖𝑖
𝑇𝑇 �2

𝑊𝑊

𝑗𝑗=1

𝐻𝐻

𝑖𝑖=1

} (7) 

Some technologies have the potential to deal with the 
model collapse, such as reducing the model bias (Ruff et al. 
2018) or designing early-stopping strategies (Reiss et al. 
2021). However, the proposed 𝐿𝐿2 loss does not need early-
stopping or change of the model architecture. 

Feature-rich. The compact and diverse conditions meas-
ure the descriptors from the perspective of distance. The fea-
ture-rich condition measures the descriptors from the per-
spective of the amount of representative information. In the 
ASD model, multi-scale and multi-level features are consid-
ered in particular. 

The multi-scale characteristic is an import difference for 
HSR images, compared to natural images. For example, 
large-scale information is important for rivers and small-
scale information is important for urban buildings. Even for 
the same scene, the images are always taken at different 
heights, which poses a challenge for the model ability to 
catch the multi-scale information. 

To enhance the model ability to deal with multi-scale in-
formation, the ASD model uses a resize operation set 𝑆𝑆𝑠𝑠 =
{𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑚𝑚} for the input patches. Given an image 𝑿𝑿, it 
is resized using each operation 𝑈𝑈𝑖𝑖 in 𝑆𝑆𝑠𝑠, and obtains 𝑚𝑚 dif-
ferent-scale versions 𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑚𝑚  of the same image. 
Then, for each center pixel 𝑥𝑥, 𝑚𝑚 patches are cropped with 

 
 
Figure 3: The descriptor optimization process of the ASD model. (a) For each normal image, its transformed image is 
generated using data argumentation techniques for generating the artificially negative samples. (b) The ASD model is de-
signed as a two-head architecture. One head outputs the dense descriptor and the other reconstruction head is designed to 
force the obtained descriptors to contain both high-level and low-level features. Pyramid patches are extracted at different 
scales for the multi-scale features. (c) To obtain the ideal descriptors, as defined in Section 3.2, the optimization tries to 
find a compact hypersphere surrounding all the descriptors of the original image by pulling them to the center, keeping the 
descriptors diverse by increasing the distance between the original descriptors and the transformed descriptors. 
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size 𝑃𝑃 × 𝑃𝑃  from the 𝑚𝑚  scaled images. Next, the obtained 
pyramid patches are fed into with 𝑚𝑚  individual encoders 
𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑚𝑚, and 𝑚𝑚 pixel descriptors are obtained, where 
each descriptor has the same length 𝐿𝐿 . The 𝑚𝑚  pixel de-
scriptors are then concatenated further to form a descriptor 
vector with length 𝑚𝑚 × 𝐿𝐿. The descriptor cube 𝑫𝑫𝑐𝑐 with size 
𝐻𝐻 × 𝑊𝑊 × (𝑚𝑚 × 𝐿𝐿) is naturally obtained when all the pixels 
in 𝑿𝑿 are processed. Finally, a 1 × 1 convolution operation is 
used to map the concatenated descriptors into size 𝐿𝐿. This is 
the process for extracting the final pixel descriptors. Eqs. (8-
10) formally express the above process, which is also the 
detailed process of 𝑓𝑓1. Figure 3 shows the process when 𝑚𝑚 
= 3. 

𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑚𝑚 = 𝑈𝑈1(𝑿𝑿),𝑈𝑈2(𝑿𝑿), … ,𝑈𝑈𝑚𝑚(𝑿𝑿) (8) 

𝑫𝑫𝑐𝑐 = concat([𝑀𝑀(𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑚𝑚)]) (9) 

𝑫𝑫 = Conv1×1(𝑫𝑫𝑐𝑐) (10) 

 Multi-level features are necessary when dealing with the 
various objects in the anomaly segmentation task. Although 
the deep architecture extracts high-level semantic infor-
mation through the descriptors, the low-level information 
such as texture is gradually forgotten as the network goes 
deeper. This is beneficial for objects such as buildings, but 
is not expected for some objects such as water and river be-
cause the texture feature is useful for them. 

To ensure that both high-level and low-level features are 
contained in the descriptors, the ASD model is designed as 
a two head architecture. Both heads grow from the concate-
nated descriptor cube 𝑫𝑫𝑐𝑐. One head uses the 1 × 1 convolu-
tion operation to obtain the final pixel descriptors. The other 
head also uses the 1 × 1 convolution but aims to reconstruct 
the original pixel. To reconstruct the pixel value, the concat-
enated descriptors are forced to contain the low-level fea-
tures. Note that the reconstruction head is only used in the 
training and is abandoned in the test stage. 𝑿𝑿′ denotes the 
reconstructed image, and the MSE is used to compute the 
loss (Eqs. (11-12)). 

𝑿𝑿′ = Conv1×1(𝑫𝑫𝑐𝑐) (11) 

𝐿𝐿3(𝑿𝑿,𝑿𝑿′) =
1

𝐻𝐻 × 𝑊𝑊���𝑿𝑿𝑖𝑖𝑖𝑖 − 𝑿𝑿𝑖𝑖𝑖𝑖′ �
2

𝑊𝑊

𝑗𝑗=1

𝐻𝐻

𝑖𝑖=1

 (12) 

 In total, the three properties: compact, diverse and fea-
ture-rich work together to design the model architecture and 
optimize the descriptor learning. The optimization objective 
of the ASD model is the sum of the above losses, as shown 
in Eq. (13). Figure 3 shows the overall descriptor learning 
process. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿1(𝑫𝑫) +  𝐿𝐿2(𝑫𝑫,𝑫𝑫𝑇𝑇) +  𝐿𝐿3(𝑿𝑿,𝑿𝑿′)  (13) 

Anomaly Score Computation 
When the descriptor optimization process of step 𝑓𝑓1 is fin-
ished, the second step 𝑓𝑓2 outputs the anomaly map based on 
the optimized descriptors. There exist various methods to 
complete step 𝑓𝑓2. Although non-parametric statistical meth-
ods do not rely on any distribution assumption, it requires a 
lot of samples to achieve accurate estimation and can be 
computationally expensive e (Pang et al. 2021). Conversely, 
parametric density estimation needs fewer samples, and the 
Gaussian assumption holds in most cases (Pimentel et al. 
2014). 
 In the ASD model, the Gaussian assumption is adopted to 
model the normal descriptors. Using the normal samples in 
the training stage, the mean 𝜇𝜇 and the covariance matrix 𝚺𝚺 
can be estimated. Given a test descriptor 𝑥𝑥𝑡𝑡, its Mahalanobis 
distance from the modeled distribution (as shown in Eq. (14)) 
is considered the anomaly degree, which can be converted 
to the anomaly score after the normalization. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  �(𝑥𝑥𝑡𝑡 − 𝜇𝜇 )𝑇𝑇𝚺𝚺−1(𝑥𝑥𝑡𝑡 − 𝜇𝜇) (14) 

Experiments 

Experimental Settings 
Datasets 
The proposed ASD model was evaluated on four HSR im-
age datasets: DeepGlobe (Demir et al. 2018), Agriculture-
Vision (Chiu et al. 2020), FAS, and Landslide4Sense (Ghor-
banzadeh et al. 2022). The DeepGlobe and Agriculture-Vi-
sion datasets were originally made for the land-cover seg-
mentation and agriculture pattern segmentation tasks, re-
spectively. To adapt these datasets for the anomaly segmen-
tation task, the pixels of the remaining classes were masked 
for a fixed normal class in the training process to keep the 
anomaly-free characteristic. 
 To show the application value of the ASD model, the FAS 
and Landslide4Sense datasets were used. The FAS dataset 
was made by ourselves for the forest monitoring application, 
where the common forest pattern (i.e., Figure 1) is treated as 
the normal class, and some abnormal objects, such as house, 
lake, car, and diseased tree, are considered as anomalies. 
The RGB imagery in the FAS dataset was made from UAV-
borne hyperspectral images in forest scene. The pixel reso-
lution is 11 cm and the image size is 120×120. In the Land-
slide4Sense dataset, the anomaly segmentation model was 
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used to segment the landslide area by learning from the nor-
mal mountain pattern. 
Comparative Models and Evaluation Metrics 
The ASD model was compared with four state-of-the-art 
methods covering both image space and feature space types. 
These methods include GANomaly (Akcay, Atapour-Abar-
ghouei, and Breckon 2018), ARNet (Fei et al. 2020), RIAD 
(Zavrtanik, Kristan, and Skocaj 2021) and deep SVDD 
(DSVDD) (Ruff et al. 2018). For the GANomaly, RIAD, 
and DSVDD, the model hyper-parameters were kept same 
as the authors’ open source code. ARNet was implemented 

using the same architecture as RIAD. The model perfor-
mance was evaluated using the area under the curve (AUC) 
metric and the mean Intersection over Union (mIOU). The 
segmentation threshold for the mIOU corresponds to the 
left-upper point of the Receiver operating characteristic 
(ROC) curve. 
Implementation Details 
The fast version (Bailer et al. 2018) of the point descriptor 
extraction network in the work of Simo-Serra et al. (2015) 
acted as the pixel descriptor encoder in the proposed model. 
In all the experiments, the models were trained for 100 
epochs, and the batch size was 1. The Adam optimizer with 
learning rate 0.0001 was used. 𝜆𝜆 was set to 10. 𝑆𝑆𝑠𝑠 was set to 
{0.5,1.0,2.0} and 𝑃𝑃 is 15 for all the descriptor encoders. The 
first 10 epochs were trained using only the 𝐿𝐿3 loss to com-
pute the initial 𝐶𝐶. 𝑅𝑅 was initialized to 3.0. 𝐶𝐶 and 𝑅𝑅 were up-
dated after each epoch using all the training descriptors. The 
dimension 𝐿𝐿 was set to 5. The data augmentation operations 
used in the ASD and ARNet model were the GaussNoise, 
ChannelShuffle, RandomBrightness, RandomContrast, and 
Solarize operations (implemented with the Albumentations 
tool (Buslaev et al. 2020)). Due to the AUC computation 
burden, 2000 test images in Agriculture-Vision dataset were 
chosen to be evaluated. The CPU was an Intel(R) Xeon(R) 
CPU E5-2690 v4 @ 2.60 GHz with 62.6 GB memory, and 
the GPU was a Tesla P100-PCIE with 16 GB of memory. 

Results on the DeepGlobe Dataset 
The quantitative and qualitative results are reported in Table 
1 and Figure 4, respectively. In Table 1, the ASD model 
achieves the highest AUC values for the four normal classes. 
For the Urban land class, the ASD model surpasses the sec-
ond-best model by over 6 points, showing its superiority 
when dealing with a complex distribution. In Figure 4, the 
anomaly maps obtained by the ASD model are the closest to 
the ground truth. 

 
 
Figure 4: The anomaly segmentation results obtained on the 
DeepGlobe dataset for each normal class, White pixels cover 
the anomalous region. 

 
 
Figure 5: The anomaly segmentation results obtained on 
the Agriculture-Vision dataset for the six normal classes. 

Method 
Urban 
land 

Agricul-
ture 

Range 
land 

Forest 
land Water Barren 

land 
AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU 

DSVDD 57.0 31.5 60.3 41.4 53.6 16.3 58.7 24.0 37.6 2.2 50.6 17.7 
RIAD 52.3 12.4 65.9 46.3 47.6 7.0 69.4 33.1 57.7 43.0 53.3 13.9 
ARNet 50.2 39.0 60.1 40.9 48.2 6.9 67.6 34.5 54.7 12.5 61.4 33.3 

GANomaly 42.8 44.3 51.7 35.8 55.1 30.6 75.4 41.3 58.8 44.5 36.8 39.7 
ASD 63.4 38.5 64.1 42.7 54.3 23.2 79.5 43.1 73.3 39.5 62.5 34.9 

 
Table 1: The anomaly segmentation results obtained on 
the DeepGlobe dataset. 

Method 
Drydown Double 

plant Endrow Weed 
cluster ND Water 

AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU 

DSVDD 60.9 30.8 53.0 14.7 54.6 10.1 48.0 3.67 59.6 24.4 72.1 26.0 
RIAD 62.2 31.0 60.9 25.6 59.3 27.7 55.2 38.2 63.8 25.7 86.1 42.7 
ARNet 61.1 30.6 51.5 15.3 57.1 25.5 53.0 15.9 59.9 26.8 45.3 9.6 

GANomaly 59.5 26.3 49.6 4.2 56.5 26.4 51.1 41.9 62.9 33.1 64.2 20.7 
ASD 67.4 36.4 61.3 24.8 61.1 25.7 58.0 19.7 65.9 31.7 90.0 40.4 

 
Table 2: The comparative quantitative anomaly seg-
mentation results on the Agriculture-Vision dataset. 
(ND is nutrient deficiency) 
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Results on the Agriculture-Vison Dataset 
Table 2 and Figure 4 respectively show the quantitative and 
qualitative results for the Agriculture-Vision dataset. In Ta-
ble 2, the ASD model achieves the best AUC results for all 
six normal classes. ASD surpasses the second-best model by 
5 points for the Drydown class. Except Weed cluster, the 
mIOU values of ASD are all close to the optimal value. In 
Figure 5, it can be seen that accurate results and fine bound-
aries are obtained by the ASD model for most classes. For 
the normal class of water, only the ASD model outputs a 
correct anomaly map, and some models completely reverse 
the anomaly regions. 

Results on the FAS and Landslide4Sense Datasets 
The FAS and Landslide4Sense datasets were used to show 
the application value of the proposed anomaly segmentation 
model in forest monitoring and landslide detection. Table 3, 
Figure 6, and Figure 7 report the related results. In both da-
tasets, the ASD model achieves the best AUC and mIOU 
scores. Satisfactory anomaly maps are obtained, demon-
strating great application value. 

Ablation Studies 
The core idea of the ASD model is to find ideal descriptors, 
so three loss constraints corresponding to the conditions de-
scribed in Section 3.2 were designed. Table 4 illustrates the 
effectiveness of three losses for different types of earth vi-
sion scenes 𝐿𝐿1 (compact loss) can better handle the scene 

with simple spatial distribution, i.e., Agriculture, Forestland, 
and Water; (from the first 3 rows). 𝐿𝐿3  (feature-rich loss) 
works on the complex scenes, i.e., Urban land and Barren 
land; (from the 3,5 and 6 rows). 𝐿𝐿2 (diversity loss) aims at 
further improving segmentation performance by artificial 
anomaly samples. (Comparing rows 1 and 3 with 4 and 5, 
respectively). 

Conclusion 
In this paper, we have proposed a pixel descriptor based 
model for the anomaly segmentation task in HSR imagery. 
The core innovations are: 1) The three conditions that the 
ideal descriptor should meet are given from the characteris-
tics of the anomaly segmentation task and HSR images. 2) 
The corresponding constraints and architecture were de-
signed on this basis. Obvious improvement was achieved on 
four datasets (including real anomalies in forest and moun-
tain scenes). Overall, proposed model sets the first baseline 
for the anomaly segmentation task of complex HSR imagery. 
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Figure 6: The anomaly segmentation results obtained on the 
FAS dataset. The common forest pattern (see Figure 1) is 
considered as normal, and four anomalies are considered. 

 
 
Figure 7: The anomaly segmentation results obtained on the 
Landslide4Sense dataset. The common mountain pattern is 
considered as normal, and the landslides are the anomalies. 

Dataset 
DSVDD RIAD ARNet GANomaly ASD 

AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU 

FAS 74.1 46.2 44.3 36.5 82.7 52.9 50.7 24.9 91.0 69.3 
Lanslide4Sense 61.6 20.7 83.7 41.0 78.8 48.7 82.2 39.1 89.8 49.3 
 
Table 3: The anomaly segmentation results obtained on the 
FAS and Landslide4Sense datasets. 
 

Constraints 
Urban 
land 

Agricul-
ture 

Range 
land 

Forest 
land Water Barren 

land 
AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU 

𝐿𝐿1 51.3 38.9 62.5 42.3 52.8 18.1 76.4 42.0 70.2 35.1 56.6 26.9 
𝐿𝐿2 40.9 45.3 59.4 37.9 53.7 40.2 76.7 47.6 71.5 36.1 49.0 34.1 
𝐿𝐿3 62.5 35.9 60.4 38.6 52.9 19.6 75.6 41.5 68.8 36.0 61.2 32.9 

𝐿𝐿1+𝐿𝐿2 56.5 32.4 61.0 39.7 54.7 31.8 78.8 48.6 72.5 40.6 54.6 22.8 
𝐿𝐿2+𝐿𝐿3 64.5 45.1 62.0 42.5 54.6 22.1 77.4 43.1 73.0 41.7 54.3 23.8 
𝐿𝐿1+𝐿𝐿3 64.1 45.1 62.7 41.9 52.9 20.0 77.3 43.1 74.5 41.5 61.7 31.5 

𝐿𝐿1+𝐿𝐿2+𝐿𝐿3 63.4 38.5 64.1 42.7 54.3 23.2 79.5 43.1 73.3 39.5 62.5 34.9 
 
Table 4: The ASD model ablation analysis for the three loss 
constraints on the anomaly segmentation results obtained us-
ing the DeepGlobe dataset. 
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