
 

1 

AnomalyCD: A benchmark for Earth anomaly change detection  

with high-resolution and time-series observations 

Jingtao Lia, Qian Zhub, Xinyu Wangb*, Hengwei Zhaoa, Yanfei Zhonga 

a State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, P. R. China. 
b School of Remote Sensing and Information Engineering, Wuhan University, P. R. China. 
*Corresponding author. Tel.: +86-27-87869685. E-mail address: wangxinyu@whu.edu.cn. 

Abstract: Various Earth anomalies have destroyed the stable, balanced state, resulting in fatalities and serious 

destruction of property. With the advantages of large-scale and precise observation, high-resolution remote 

sensing images have been widely used for anomaly monitoring and localization. Powered by the deep 

representation, the existing methods have achieved remarkable advances, primarily in classification and 

change detection techniques. However, labeled samples are difficult to acquire due to the low probability of 

anomaly occurrence, and the trained models are limited to fixed anomaly categories, which hinders the 

application for anomalies with few samples or unknown anomalies. In this paper, to tackle this problem, we 

propose the anomaly change detection (AnomalyCD) technique, which accepts time-series observations and 

learns to identify anomalous changes by learning from the historical normal change pattern. Compared to the 

existing techniques, AnomalyCD processes an unfixed number of time steps and can localize the various 

anomalies in a unified manner, without human supervision. To benchmark AnomalyCD, we constructed a 

high-resolution dataset with time-series images dedicated to various Earth anomalies (the AnomalyCDD 

dataset). AnomalyCDD contains high-resolution (0.15–2.39 m/pixel), time-series (3–7 time steps), and large-

scale images (1927.93 km2 in total) collected globally. Furthermore, we developed a zero-shot baseline model 

(AnomalyCDM), which implements the AnomalyCD technique by extracting a general representation from 

the segment anything model (SAM) and conducting temporal comparison to distinguish the anomalous 
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changes from normal changes. AnomalyCDM is designed as a two-stage workflow to enhance the efficiency, 

and has the ability to process the unseen images directly, without retraining for each scene. Compared to the 

traditional methods, AnomalyCDM can suppress the normal changes and increase the recall rate by 10 points. 

The large-scale AnomalyCDD dataset fully proves the superiority of AnomalyCDM in efficiency and 

generalization. 
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1. Introduction 

Monitoring Earth surface anomalies has long been a critical priority for nations worldwide. Deviating 

from the historical law and stable state (Wei et al., 2023), anomaly events can develop into natural or man-

made disasters and result in fatalities and serious destruction of property (Merz et al., 2021; Zheng et al., 

2021). Statistical analysis has shown that anomaly events caused approximately $202.66 billion in economic 

losses and affected about 0.11 billion people worldwide in 2023 (Coly et al., 2022). To mitigate the harm, the 

United Nations has set up multi-hazard early warning systems (MHEWS) to protect and save vulnerable 

communities from destructive anomaly events. 

Remote sensing is a common operational tool for anomaly monitoring due to the periodic and large-scale 

observation ability, which is crucial for the subsequent response (He et al., 2024a). Nations worldwide have 

established specialized programs for anomaly monitoring and emergency response with Earth observation 

programs such as the Earth Science Disasters Program in the U.S. supported by the National Aeronautics and 

Space Administration (NASA) and the Charter program supported by the European Space Agency (ESA). 

With the development of sensor technology, high spatial resolution remote sensing images are becoming 

increasingly available, providing more detailed monitoring information. For example, Zheng et al. (2021) 

processed images from the WorldView-2 and WorldView-3 platforms for precise building damage assessment 

with six disaster categories, which may not be possible in medium- or low-resolution images. 

Modern anomaly detection methods have shown great promise, especially when powered by the deep 

learning technique, including both classification models and change detection models. However, these models 

are mostly reliant on human annotation, which makes the trained model limited to certain anomaly categories. 

Classification models are always trained using single-temporal labeled anomaly samples (He et al., 2024a; 

Yar et al., 2023), and the change detection models are trained with labeled anomaly samples between the pre-
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event and post-event images (Zhang et al., 2023). Given a different anomaly category, separate models need 

to be retrained with category-specific labeled samples, which is not cost-effective (Capliez et al., 2023), since 

there are various anomaly categories deviating from the normal pattern, as shown in Fig. 1. Furthermore, the 

existing models struggle to process rare or unseen anomalies with few samples (Tupper and Fearnley, 2023). 

To overcome this barrier, we propose the anomaly change detection (AnomalyCD) technique, which can 

accept an unfixed number of time steps and localize anomalies from the perspective of the dynamic change 

pattern. Our core observation is that normal changes are constantly occurring, while an anomaly corresponds 

to a change that has not occurred before. Assuming that the changes in historical images are normal due to 

the low probability of occurrence (Khandelwal et al., 2017), continuous observations can help us to distinguish 

between anomalous changes and normal changes, where the normal changes are commonly caused by periodic 

activities and varying imaging conditions. Compared to the existing techniques shown in Fig. 2, AnomalyCD 

relies on dynamic observations to filter out the anomalous changes without human supervision, where the 

trained model has the potential to detect various anomalies in a unified manner. 

 
Fig. 1. Various Earth surface anomalies deviate from the historical normal pattern in ocean, urban, and forest scenes. Designing 
a unified anomaly detection model is necessary, considering the cost efficiency and generalizability for unseen or rare anomalies.  
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To benchmark the AnomalyCD technique, we first built a high-resolution dataset with time-series images 

for the Earth anomaly detection task. The anomaly change detection dataset (AnomalyCDD) is characterized 

by three aspects, i.e., the targeted Earth anomaly detection task, time-series images, and large-scale 

observations. Differing from the traditional datasets dedicated to general changes or building changes, 

AnomalyCDD focuses on six categories of Earth anomalies that have caused serious damage, which were all 

collected from news events. For the pre-event images, all the available images over the nearest 3 years were 

collected to form the historical time-series observations. Most events have 4–5 time steps for extracting the 

normal changes from the time-series images, and some events have 6–7 steps. Precise pixel-level annotation 

is provided for each event, including both the anomaly location and damage category. With the high spatial 

resolution (0.15–2.39 m/pixel), most of the images are over 10000 × 10000 pixels in size, covering a total of 

1927.93 km2. The collected anomaly events are dispersedly distributed at a global scale. 

Based on the AnomalyCDD dataset, a zero-shot anomaly change detection model (AnomalyCDM) was 

further developed via the temporal visual representation comparison extracted from the segment anything 

model (SAM) (Kirillov et al., 2023). Following the ethos of the AnomalyCD technique in Fig. 2, 

AnomalyCDM is designed as a two-stage workflow, where the first stage detects all the change locations as 

   
(a) Classification (b) Change detection (c) AnomalyCD 

 

Fig. 2. Comparison between the proposed AnomalyCD technique and the existing classification and change detection techniques. 
(i) AnomalyCD accepts an unfixed number of time steps and learns from the historical images without human supervision, where 
the historical changes are assumed to be normal (green line) and any unseen change (red line) is treated as an anomaly. In contrast, 
classification and change detection techniques deal with fixed single- or bi-temporal images and rely on human annotation to 
complete the training process. (ii) Without the constraint from labeled samples, AnomalyCD can detect various anomaly 
categories in a unified manner, while the classification and change detection models need to be retrained given a different 
anomaly category.  

 



 

6 

anomaly candidates, using only the latest bi-temporal images, and the second stage further filters out the 

normal changes. The change score is computed by comparing the corresponding SAM embeddings from the 

different time steps, and the changes that happened in the historical images are all considered as normal in the 

second stage. The SAM was chosen considering the proven property that extracted embeddings can be 

semantically grouped for unseen images, which enhances the zero-shot detection ability. Fig. 3 shows the 

zero-shot performance, referring to the anomaly categories of collapse, obstruction, and explosion, where 

AnomalyCDM is able to process the images directly, without retraining. Given the change map of the first 

stage, AnomalyCDM examines all the historical images (first column) and realizes that the changing ships 

(Fig. 3a) and fluvial movement (Fig. 3b) belong to the normal changes caused by periodic activities. A similar 

situation can be observed in Fig. 3c for the normal changes caused by the imaging differences of the same 

 
(a) Suppressing normal changes caused by periodic human activities 

 
(b) Suppressing normal changes caused by periodic natural activities 

 
(c) Suppressing normal changes caused by varying imaging conditions 

 

Fig. 3. Exemplified normal changes caused by periodic activities and imaging conditions, where the red circles represent real 
anomaly regions and the green circles represent the normal change regions. From top to bottom, the anomaly events are (a) the 
collapse of the Nanfang’ao Bridge in Taiwan, China (2019), (b) the obstruction of the Suez Canal (2021), and (c) the warehouse 
explosion in the Port of Tianjin in China (2015). Periodic activities are caused by human activities (e.g., the harbor ships in (a)) 
or natural activities (e.g., caused by fluvial movement in (b)), where the first stage in AnomalyCDM detects all the changes, and 
the second stage suppresses the periodic activities by analyzing all the historical images. A similar performance can be observed 
for suppressing the normal changes caused by varying imaging conditions (e.g., satellite viewing angles in (c)). 
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building. AnomalyCDM achieves an average anomaly event detection F1-score of 55.62, surpassing the 

traditional change detection models by a large margin of around 13 points. 

The main contributions of this paper are summarized below: 

1. We propose the AnomalyCD technique for Earth surface anomaly detection. Differing from the existing 

techniques, AnomalyCD learns to distinguish the normal and anomalous changes from an unfixed number 

of historical time steps. Without the limitation of human supervision, the trained model of AnomalyCD 

can process varied anomalies in a unified manner. 

2. An anomaly change detection dataset—AnomalyCDD—was constructed, dedicated to the Earth anomaly 

detection task. AnomalyCDD contains high-resolution (0.15–2.39 m/pixel), time-series (3–7 time steps), 

and large-scale images (1927.93 km2 in total) collected from 80 anomaly events globally. 

3. An anomaly change detection baseline model—AnomalyCDM—was designed, which can detect the 

unseen images in a zero-shot manner with the temporal visual representation from the SAM latent space. 

The two-stage workflow helps AnomalyCDM identify the real anomalous changes effectively. 

The rest of this paper is organized as follows. Section 2 introduces the related work about Earth anomaly 

detection. Section 3 presents the constructed AnomalyCDD dataset and the detailed statistical information. 

The proposed AnomalyCDM baseline is presented in Section 4. Section 5 validates the zero-shot detection 

performance of AnomalyCDM on the constructed dataset. Finally, the paper is concluded in Section 6. 

2. Related work 

2.1 Earth surface anomaly detection in the deep learning era 

Over the past decade, the performance of Earth surface anomaly detection has made significant advances 

across multiple anomaly categories, propelled by deep learning (Wei et al., 2023). The main anomaly detection 

methods include classification models (He et al., 2024a; Yar et al., 2023) and change detection models (Zhang 
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et al., 2023; Zheng et al., 2021). Classification models rely on single-temporal labeled samples and are always 

trained for specific anomaly events (including both image level and pixel level). For example, Yar et al. (2023) 

trained a fire detection model with 3000 labeled normal and fire images from drone and satellite platforms, 

where diverse scenes, including night-time and cloudy weather conditions, were collected to enhance the 

model robustness. He et al. (2024b) focused on the anomaly type of flood, and trained a segmentation model 

with 2862 fully labeled samples from the high-resolution Calgary-Flood dataset. However, under supervised 

learning, the scale and quality of the labeled anomaly samples has a great influence on the model performance 

(Pang et al., 2021). 

Differing from classification models, change detection models utilize bi-temporal images for anomaly 

localization, including pre-event and post-event images. To reduce the label cost, change detection models for 

anomaly detection mostly belong to the branch of binary change detection, which includes only two annotated 

categories of anomalous changes and no changes. For instance, Zhang et al. (2023) used 630 image pairs with 

binary labels to monitor the large-scale anomaly of a landslide in Japan, using source high-resolution images 

from the SPOT 6 satellite. In addition to localizing anomalies, some studies have further categorized fine-

grained levels. For example, Zheng et al. (2021) used the large-scale xBD dataset to not only localize damaged 

buildings but also recognize four damage levels, such as minor damage or destroyed. Benefiting from the 

reference of pre-event images, change detection models always have fewer false alarms and dominate the 

Earth anomaly detection task. 

The success of change detection models is evident across various anomaly types. Despite this, the models 

are mostly supervised and trained for fixed anomaly categories, which hinders their application for anomalies 

with few samples or unknown anomalies. Although some unsupervised (Wu et al., 2023) or zero-shot change 

detection models (Zheng et al., 2024) have less need for sample annotation, they detect all kinds of changes, 
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without the supervision constraints, including the normal changes, as shown in Fig. 3, and bring more false 

alarms. 

2.2 Change detection with time-series observations (more than two) 

The proposed AnomalyCD method uses an unfixed number of time steps to detect anomalous changes, 

so it is necessary to review the related techniques for time-series observations, which include continuous 

change detection (Zhu and Woodcock, 2014) and abrupt change detection (Brakhasi et al., 2021). Continuous 

change detection was first proposed by Zhu and Woodcock in 2014, where it was used for the dynamic land-

cover mapping task with all the available Landsat observations (Zhu and Woodcock, 2014). The continuous 

change detection and classification (CCDC) algorithm was adopted by the United States Geological Survey 

(USGS) as the official algorithm for monitoring land-cover changes (Xian et al., 2022). The CCDC algorithm 

detects a real change first and then updates the corresponding land-cover types, where a real change means 

that the corresponding pixel is observed to change in multiple consecutive images. Differing from the CCDC 

algorithm, abrupt change detection uses historical observation data to fit a predictor, where a large prediction 

error represents abrupt change. The abrupt change detection technique is mostly used for point data with 

statistical trends. For example, Li et al. (2022) used 20-year MODIS long-term land surface temperature (LST) 

data and the abrupt change detection technique to detect abrupt changes in an LST time series. Abera et al. 

(2022) used multi-source data from satellite observations (Landsat and MODIS) and airborne laser scanning 

data to monitor the net fractional woody cover abrupt change during 2001–2019 over Ethiopia and Kenya  

 Compared to continuous change detection and abrupt change detection, the proposed AnomalyCD 

technique also uses images from multiple time steps, but differs in the detection principle. Serving dynamic 
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mapping tasks, continuous change detection uses multiple post-event time steps to ensure that a land-cover 

change happened and needs to be updated. In contrast, AnomalyCD uses multiple historical images (i.e., pre-

event) to discriminate the anomalous changes, which can achieve a faster anomaly response than continuous 

change detection. Abrupt change detection focuses on point observations and models the statistical trends, 

where a large prediction error represents an abrupt change. Focusing on image data, AnomalyCD defines an 

anomalous change as a change that has never occurred in historical data, where the trained model can also be 

aware of the normal changes that do not follow a statistical trend. 

3. AnomalyCDD: A dataset for anomaly change detection 

To benchmark the AnomalyCD technique, we built a new dataset called AnomalyCDD with high-

resolution time-series images covering various Earth anomaly categories. In this section, we first give an 

overview of the constructed dataset, followed by some necessary statistics. Based on this, the unique 

characteristics of the AnomalyCDD dataset are highlighted by comparing it with the existing related datasets. 

3.1 Dataset overview 

The AnomalyCDD dataset has six categories, covering 80 large-scale anomaly events worldwide with 

time-series observations. Table 1 and Fig. 4 give an overview description of the dataset. The anomaly 

 
Fig. 4. The global spatial distribution of the collected anomaly events, where the collected events cover different states and 
countries. 
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categories in Table 1 refer to both natural (e.g., landslide) and man-made anomaly events (e.g., large-scale 

explosion). Some anomaly categories have only a few events, such as plane crashes and tornados, which are 

categorized as “others”. Fig. 4 shows the spatial distribution of the collected anomaly events, where the events 

of each category are distributed in different states and nations. Each anomaly event is related to large-scale 

time-series images, where the total covered area reaches 1927.93 km2. The various anomaly categories, the 

globally dispersed distribution, and the large-scale observations make the dataset very challenging, especially 

without any human supervision. 

We collected the anomaly events from news reports and then downloaded the corresponding time-series 

images from the Google Earth platform. For the pre-event images, all the available images in the nearest 3 

years were collected to form the time-series observations. Some event locations can have long satellite revisit 

periods, so we extended the collection range from 3 years to 8 years for these events. Most of the images have 

a spatial resolution in the range of 0.15–2.39 m/pixel. The anomaly events are labeled at the pixel level, 

according to the event location (longitude and latitude) and the related news reports. 

Table 1 
Anomaly categories in the AnomalyCDD dataset, which includes six categories and covers a large-scale region. 

Category Description Anomaly 
events 

Coverage 
area (km²) 

Explosion 
A sudden and violent release of energy, often resulting in the generation of high 
temperatures, gases, and pressure, which cause damage to structures and injuries to 
living beings. 

18 194.54 

Collapse 
The abrupt structural collapse of a building, infrastructure, or any constructed entity, 
caused by the compromise of its structural integrity or poor construction quality over 
time. 

9 49.25 

Landslide A geologic event characterized by the mass movement of soil, rocks, and debris down 
a slope, typically triggered by heavy rainfall, earthquakes, or human activities. 17 484.30 

Fire An unexpected and uncontrolled fire that spreads rapidly, including building fires, forest 
fires, and volcanic eruptions. It often results in building collapse or widespread damage. 16 255.18 

Dam break Dam breaks can result from factors such as overtopping, foundation instability, or 
design flaws, leading to the unrestricted release of stored water or other materials. 9 652.59 

Others 
This category encompasses events that cannot be specifically classified into the 
categories described above, such as plane crashes, oil spills, terrorist attacks, tornadoes, 
earthquakes, and so on. 

11 322.06 
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3.2 Statistics for AnomalyCDD 

To give a comprehensive description, statistics are provided in Fig. 5 about the time steps (Fig. 5a), 

anomaly pixel number (Fig. 5b), anomaly area proportion (Fig. 5c), and the land-cover categories of the 

anomaly regions (Fig. 5d). In Fig. 5a, most events have 4–5 time steps, but some have 6–7 time steps. The 

anomaly category of collapse has the largest number of time steps (mostly 5–7 time steps), which may be 

because most such events occur in urban areas with shorter revisit periods. Fig. 5b and Fig. 5c show the 

anomaly pixel number and area proportion of each event. Most events have anomaly regions with several 

hundred meters width and height, occupying a proportion of around 1–3% in the collected large-scale images. 

In addition to the anomaly location, we have also labeled the affected land-cover categories for each anomaly 

event, as shown in Fig. 5d, to support the damage assessment requirement. Six classical land-cover categories 

are considered, where the “others” category refers to the pixels that do not belong to the previous five 

categories.  

  

(a) (b) 

 
 

(c) (d) 
 

Fig. 5. Statistical information for the AnomalyCDD dataset, including (a) the time step number, (b) the anomaly pixel number, 
(c) the anomaly area proportion, and (d) the land-cover categories of the anomaly regions. 
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3.3 Characteristics of AnomalyCDD  

Compared to the existing high-resolution change detection datasets (Table 2), AnomalyCDD has three 

unique characteristics: the various Earth anomaly categories, time-series images, and large-scale observations. 

 (1) Various Earth anomaly categories. Most datasets are built for general change monitoring (e.g., 

from grass to building) (Lebedev et al., 2018) or only for building changes (e.g., the LEVIR-CD (Chen and 

Shi, 2020) and WHU Building (Ji et al., 2018) datasets). In contrast, the AnomalyCDD dataset is expected to 

facilitate the detection of Earth anomalies, where the collected events refer to six anomaly categories, as listed 

in Table 1. 

 (2) Time-series images. The current high-resolution change detection studies mostly concentrate on bi-

temporal images, while the proposed AnomalyCDD dataset has 4–5 time steps for most of the anomaly events. 

The time-series images were collected to help the AnomalyCD model distinguish the anomalous changes from 

the normal changes. The DynamicEarthNet dataset is a special case, which has 730 daily time steps from the 

Planet platform (Toker et al., 2022). However, it focuses on general changes and is not suitable for the Earth 

anomaly detection task. 

(3) Large-scale observations. AnomalyCDD encompasses 80 anomaly events covering 1927.93 km2 in 

Table 2 
Statistical comparison between AnomalyCDD and the existing change detection datasets. AnomalyCDD focuses on the changes 
related to Earth anomalies, and the images are large-scale time-series images with a high spatial resolution. 

Dataset Resolution 
(m) Source Area 

(km2) 
Time 
steps Image size Image 

number Focus 

LEVIR-CD (Chen and Shi, 
2020)  0.5 Google Earth 166.96 2 1024 637 Changes related to 

buildings 
CDD (Lebedev et al., 2018)  0.03–1.0 Google Earth \ 2 256 16000 General changes 

WHU Building (Ji et al., 2018)  0.075, 0.3–
2.5, 2.7 

QuickBird, 
Worldview series, 

IKONOS, and ZY-3 
\ 2 512 25679 Changes related to 

buildings 

SECOND (Yang et al., 2021)  0.5–3.0 \ \ 2 512 4662 General changes 

Hi-UCD (Tian et al., 2020)  0.1 Estonian Land 
Board 13.56 3 1024 1293 Urban changes 

DynamicEarthNet (Toker et 
al., 2022)  3.0 PlanetFusion 707.78 730 1024 27375 General changes 

AnomalyCDD 0.15–2.39 Google Earth 1927.93 3–7 1872–22463 80 Changes related to 
Earth anomalies 
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total, which greatly surpasses the other datasets listed in Table 2. With the high spatial resolution, most of the 

images are over 10000 × 10000 pixels in size. Furthermore, the anomaly events are dispersedly distributed at 

a global scale. The large-scale setting in area and spatial distribution can not only reflect the advantage of the 

remote sensing technique for the Earth anomaly detection task, but also validates the model generalizability 

since an overfitting deep model would perform poorly in large-scale scenes. 

4. AnomalyCDM: Anomaly change detection with time-series images 

The AnomalyCD technique represents an unsupervised and unified solution for the Earth anomaly 

detection task. To instantiate it and set a baseline for the AnomalyCDD benchmark, a zero-shot anomaly 

detection model named AnomalyCDM was developed, which can process an unfixed number of time steps 

and localize various anomalies without human supervision. Based on the SAM (Kirillov et al., 2023), 

AnomalyCDM does not need fine-tuning for a new data distribution and can give a rapid response in practical 

usage. In the following, we first give an overview of AnomalyCDM and then go into the details of the model. 

4.1 Model overview 

The framework of AnomalyCDM is shown in Fig. 6, which is a two-stage workflow of first detecting all 

the changes and then distinguishing the anomalous changes. Due to the low probability property of anomaly 

events, the historical images can be seen as anomaly-free, where the changes belong to the normal state, which 

provides the basis for distinguishing the anomalous changes in the second stage. 

In the first stage, the nearest bi-temporal images are used to detect all the changes. The time-series 

observations with n  historical images are denoted as 2 1{ ,..., , , }nT T T X , where X  is the current image to 

be detected and 1 n−T T  are the historical images assumed to be normal. 1T  comes from the nearest time 

step and nT  from the farthest. Although changes may not be anomalies, anomalies must appear as change 
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locations between X   and 1T   in turn. Thus, the first stage can be considered as selecting the anomaly 

candidates for the later processing, which can reduce the processing burden of the second stage significantly 

since most areas are unchanged. We denote the proposed module responsible for the first stage as the SAM 

bi-temporal change detection (SAM Bi-CD) module. 

At the second stage, the detected changes are processed further to distinguish the real anomalous changes 

with the time-series images. The process is conducted at the instance level, referring to the SAM segmentation 

masks. For each instance mask, the corresponding 1n +   embeddings are cropped from the time-series 

images, which includes the embedding x   for X   and 1 n−t t   for 1 n−T T  . Assuming that 1 n−t t  

represents the normal pattern, once there is a it  similar to x , the mask would obtain a small anomaly score, 

even if 1t  and x  have a great difference. Since normal changes are mostly caused by periodic activity or 

the changing imaging conditions and have occurred before, this operation can suppress the normal changes 

effectively and retain only the real anomalies. 

 
Fig. 6. The overall workflow of AnomalyCDM. AnomalyCDM has two stages, where the first stage detects all the changes as 
anomaly candidates with the designed SAM Bi-CD module, and the second stage discriminates the anomalous changes further 
by comparing the temporal representations. 
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4.2 Stage 1: Detecting all changes 

SAM Bi-CD detects all the changes between X  and 1T  as anomaly candidates at this stage since the 

anomalies will be part of the change locations. Fig. 7 shows the detailed bi-temporal change detection 

workflow, where the SAM is used twice for the bi-temporal images. With the prompts of grid points 

1 2 256, ,...,p p p , the embeddings in the feature space (i.e., tF  and xF ) and the corresponding segmentation 

masks (i.e., tM   and xM  ) are extracted separately. With tM   and xM  , prior works have attempted to 

compare the mask shapes directly and treated a low intersection over union (IoU) value as a high change 

probability (Chen et al., 2024a). However, we found that a small geometric registration error can bring serious 

disturbance, so we chose to compare the masks in the embedding space. For a binary instance mask 

,t j t∈M M  , the corresponding mask embeddings are cropped from tF   and xF   (e.g., tF  ( ,t jM  ==1), xF

( ,t jM ==1)) and then their mean embeddings are compared with the distance metric D . The final obtained 

change score ,( )t jS M  is given as follows: 

, , ,( ) ( ( ), )1 1( )t j t t j x t jS D == == =M F M F M  (1) 

 To deal with the two cases of object disappearance and appearance simultaneously, the embedding 

comparison operation is applied for both segmentation masks xM  and tM . The mask is segmented in xM  

for the object appearance case and in tM  for the object disappearance case. After the comparison in both 

 

Fig. 7. The detailed workflow of the SAM Bi-CD module in the first stage, which conducts bi-temporal change detection to filter 
out the anomaly candidates. To deal with the two cases of object disappearance and appearance simultaneously, we compare the 
instance embeddings twice for both xM  and tM . The comparison is conducted in the embedding space to reduce the impact 
of geometric registration error. 
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directions, two change density maps (i.e., tC  and xC ) can be obtained with the same spatial shape. To 

ensure that all the changes are detected, the maximum value from tC  and xC  for each overlapped mask is 

taken and a threshold binarization operation (i.e., 1g ) is applied. The final output binary change map bC  

can be represented as follows: 

1(max( , ))b t xg=C C C  (2) 

4.3 Stage 2: Discriminating anomalous changes 

Based on the anomaly candidates in bC , all the time-series images are introduced in this stage to ensure 

that the model is aware of the normal and anomalous changes. The core idea is to treat all the historical images 

1 n−T T  as normal, and the changed instances in bC  are considered normal if the instance pattern has been 

observed in any time step of 1 n−T T . By considering all the time steps, the normal changes caused by periodic 

activity and the change of imaging conditions can be largely suppressed.  

Similarly, we conducted a comparison in the embedding space of all the time steps to deal with the 

registration error for each instance, as shown in Fig. 6. Specifically, the images of all the time steps were 

converted into the embedding space with the SAM encoder. Given an instance mask kM , the corresponding 

embedding from all the time steps was cropped according to the coordinates 1 1( , ) ( , )l la b a b− . As in stage 1, 

the mean embedding vector was taken to represent the mask, and the obtained embeddings were denoted as

1 2, , ,.., nx t t t . Differing from the change score S  computed with two time steps, the anomaly change score 

aS  compares all the time steps together, as follows: 

1
( ) min( ( , ))

n

a k i
i

S D
=

= ∑M x t  (3) 

which assign a continuous anomaly score for each mask. By conducting a threshold binarization operation 

again (i.e., 2g ), the binary anomaly change map can be finally obtained. 
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5. Experiments and analysis 

5.1 Experimental settings 

Dataset: The large-scale AnomalyCDD dataset built in this study was used to evaluate the detection 

models. Due to the large-scale property and the diverse anomaly categories, AnomalyCDD can prevent the 

overfitting problem and provide a more objective result. 

Evaluation metrics: The conventional change detection metrics are used in this paper, i.e., recall, 

precision, and F1-score. The recall reflects how many anomaly pixels have been detected, and the precision 

reflects how many detected anomaly pixels are correct. Since most anomalous change pixels always occupy 

an extremely low proportion (less than 4%), and it is more important to find the anomalies than suppress the 

false alarms, the precision was computed by weighting the true anomalies and false anomalies in a ratio of 

1:10. The F1-score balances the recall and precision and acts as a comprehensive metric. 

Comparison methods: Due to the large-scale observations and various anomaly categories, it was 

infeasible to apply some of the existing trained models or provide comprehensive training labels for 

supervised training. Label-free change detection methods were therefore chosen for the comparison analysis, 

including: (i) unsupervised change detection models (image differencing (ID) (Lipton et al., 1998), change 

vector analysis (CVA) (Bovolo and Bruzzone, 2006), and fully convolutional change detection with generative 

adversarial network (FCD-GAN) (Wu et al., 2023); (ii) zero-shot change detection models (SAM-multimodal 

change detection (SAM MCD) (Chen et al., 2024b) and the SAM Bi-CD module in the proposed 

AnomalyCDM); and (iii) AnomalyCDM and its variant SAM-change vector analysis (SAM-CVA) model, 

where we extend the time-series comparison approach into the CVA method with the same SAM latent feature 

space. 

Implementation details. Except for FCD-GAN, the remaining models inferred the test images directly, 
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without training. FCD-GAN was trained with a learning rate of 0.0002, batch size of 8, and 20 training epochs. 

The remaining settings were consistent with the original papers. Since the label-free methods can only output 

a continuous change density map, we chose the 0.94 quantile to obtain the binary map, considering the low 

ratio prior of anomalies (see the related analysis in Section 5.2.4). The SAM-based models (e.g., SAM Bi-CD 

and AnomalyCDM) processed the large-scale images with a non-overlapped patch size of 2048 pixels (see 

the related analysis in Section 5.2.5). As in Fig. 6, SAM Bi-CD acted as a module in AnomalyCDM and 

provided the coarse anomaly candidates, where only the top 30% change instances were considered further 

with the time-series observations to judge the anomaly degree for efficient processing. We used the SAM-

based version to segment the masks, where 16 16×  point prompts were used with an IoU prediction threshold 

of 0.7 and a stability score threshold of 0.4. 

5.2 Experimental results and analysis 

5.2.1 Quantitative comparison results 

We report the quantitative results in Table 3, including the results for each anomaly category and the 

average results. Although ID and CVA can process the images efficiently with simple mathematical 

calculations, they detect in the original image space and are sensitive to the normal changes caused by the 

imaging conditions, leading to a poor performance, especially for large-scale scenes. The obtained F1-scores 

are mostly lower than 0.20. As an unsupervised method, FCD-GAN introduces the generative adversarial 

network (GAN) to map the relationship of the two time step images, where the deep representation and 

regression prior enhance the F1-score performance to 0.30. Differing from FCD-GAN, which needs to be 

retrained in the target domain, SAM MCD and SAM Bi-CD are powered by the remarkable SAM model, 

where the generalizable segmentation performance supports the zero-shot detection. Both models achieve an 

average F1-score performance of over 0.40. The proposed SAM Bi-CD module shows a superior performance 
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since we do not compare the segmented masks directly, but instead the latent features, which can suppress the 

influence of registration error and projection angle difference, especially for buildings. 

With the generalizable feature space of the SAM, the proposed AnomalyCDM introduces time-series 

observations and increases the F1-score performance further by 7 points. Since the comparison models used 

the same 0.94 quantile, the superior performance of AnomalyCDM proves the effectiveness of time-series 

information for suppressing the normal changes and increasing the anomaly recall. A similar improvement 

can be observed in the SAM-CVA model, which shows the robustness of this key insight for different 

implementations. 

5.2.2 Qualitative comparison results 

Partial and whole detection maps are visualized in Figs. 8 and 9. The partial results are listed for each 

anomaly category, and the bi-temporal results of FCD-GAN and SAM Bi-CD are also shown. Since FCD-

GAN is conducted at the pixel level and SAM Bi-CD at the instance level, the maps of SAM Bi-CD have 

fewer noisy pixels and are more complete. SAM Bi-CD detects all the changes in the first stage of 

AnomalyCDM, and the detected results are processed further in the second stage for distinguishing the 

normal/anomalous changes. The last two columns in Fig. 8 demonstrate the effect of the time-series 

Table 3 
Quantitative comparison results on the constructed AnomalyCDD dataset. The models did not need labeled samples and could 
process the test images directly. 

 Explosion Collapse Landslide Fire Dam break Others Average 

 R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 

ID 3.72 2.63 3.07 9.81 4.82 6.46 4.76 1.40 2.16 5.87 5.71 5.79 0.00 0.00 0.00 15.76 10.34 12.49 6.65 4.15 5.00 

CVA 11.72 6.39 8.27 33.84 22.29 26.88 22.47 18.45 20.26 18.85 18.57 18.71 10.55 7.90 9.04 22.22 11.85 15.46 19.94 14.24 16.44 

FCD-GAN 26.59 24.57 25.54 39.85 25.80 31.32 36.81 39.27 38.00 23.28 29.43 26.00 37.40 72.35 49.31 25.82 29.29 27.45 31.63 36.79 32.94 

SAM MCD 28.61 33.26 30.76 62.34 43.98 51.58 50.72 57.28 53.81 32.96 51.32 40.14 31.28 82.14 45.30 27.10 46.86 34.34 38.84 52.47 42.66 

SAM Bi-CD 39.38 28.03 32.75 70.68 33.09 45.07 61.87 48.10 54.12 56.15 50.47 53.16 52.67 79.73 63.43 41.31 43.52 42.39 53.68 47.16 48.49 

SAM-CVA 46.47 37.54 41.53 70.33 38.61 49.85 67.20 55.30 60.67 60.49 56.44 58.39 63.76 88.97 74.28 36.57 45.03 40.36 57.47 53.65 54.18 

AnomalyCDM 55.68 36.30 43.95 76.03 36.20 49.04 72.51 52.07 60.61 64.96 54.26 59.13 69.77 87.68 77.71 42.43 44.14 43.27 63.56 51.78 55.62 
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observations for suppressing most normal changes. 

The constructed AnomalyCDD dataset covers nearly 2000 km2 in total, and most of the anomaly events 

are of a large scale. To show the large-scale detection performance, two exemplified anomaly events are 

shown completely in Fig. 9. The first event corresponds to the landslide in Badul, Sri Lanka (2014), with an 

image size of 6160 6111× . The second event corresponds to a fire that broke out in West Yorkshire, England, 

with an image size of 19008 15296× . To show the separation degree of anomaly/normal regions, the binary 

detection maps were obtained with thresholds, ensuring the same anomaly recall rate of 70%. We use a yellow 

mask to represent the true anomalies and a red mask to represent the false alarms. In the first landslide event, 

the damaged area can be detected with few false alarms and basically matches the real region. Even though 

the second area has seven times the area of the first event, the fire area is detected successfully, with only four 

 
Fig. 8. Qualitative comparison results for the six anomaly categories. Compared to the traditional change detection methods, the 
proposed AnomalyCDM can make the model aware of anomalous changes and reduce the false alarms. 
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false alarms, which is acceptable in practical usage. The results obtained for the two events confirm that the 

proposed AnomalyCDM can effectively distinguish the normal and anomaly pixels in large-scale scenes. 

5.2.3 Ablation analysis for the time-series observations 

The prior comparison results indicated that the time-series observations can make the model aware of 

normal/anomalous changes. This section provides a detailed ablation analysis for each event. Fig. 10 reports 

the quantitative improvement of AnomalyCDM compared to the bi-temporal SAM Bi-CD model in the recall, 

precision, and F1-score metrics. Each point represents an anomaly event, and the improvement amount shows 

the promotion after introducing the time-series observations. The results show that most events obtain a better 

performance with time-series images, compared to bi-temporal images. 

To clarify the connection between the time step number and the detection performance, we filtered out 

 
(a) 

 
(b) 

 

Fig. 9. Exemplified results of the proposed AnomalyCDM on two large-scale anomaly events. (a) The landslide event in Badul, 
Sri Lanka (2014) and (b) a fire event that broke out in West Yorkshire, England (2016). The yellow mask represents correct 
detections, and the red mask represents the false alarms. The results show that the proposed model has an accurate anomaly 
localization ability, even for large-scale and complex scenes. 
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39 anomaly events with at least four normal time steps and observed the performance change when reducing 

the time steps one by one. The results are reported in Table 4. For the 39 events, almost all the quantitative 

metrics become worse as the number of normal time steps is reduced, and the decrease amount is positively 

related to the number of time steps. After computing the average performance, we found that there appears to 

be a pattern where the F1-score metric is reduced by roughly 2 points and the precision by 1 point on average 

for every reduction of normal time step. 

   
(a) (b) (c) 

 

Fig. 10. The improvement of time-series anomaly change detection compared to the bi-temporal change detection results, which 
shows the event-level improvement in (a) recall, (b) precision, and (c) F1-score. The results show that the use of the time-series 
information in the AnomalyCD technique can promote the performance. 

 

Table 4 
Quantitative results showing the connection between the time step number and detection performance, which show that the 
decreasing accuracy is positively related to the number of time steps. The colored numbers represent the difference in accuracy 
after reducing the normal time steps. 

Anomaly category 
All the normal time steps Normal time steps −1 Normal time steps −2 Normal time steps −3 

R P F1 R P F1 R P F1 R P F1 

Explosion 74.78 47.81 58.33 
72.69 47.48 57.44 68.15 45.29 54.42 58.61 42.09 48.99 

−2.09 −0.33 −0.89 −6.63 −2.52 −3.91 −16.17 −5.72 −9.34 

Collapse 76.96 35.86 48.92 
73.69 35.28 47.72 73.07 35.86 48.11 72.09 35.01 47.13 

−3.27 −0.58 −1.20 −3.89 0.00 −0.81 −4.87 −0.85 −1.79 

Landslide 77.36 54.64 64.05 
74.89 54.23 62.90 67.43 52.69 59.16 72.89 54.68 62.48 

−2.47 −0.41 −1.15 −9.93 −1.95 −4.89 −4.47 0.04 −1.57 

Fire 64.29 67.27 65.75 
63.30 66.75 64.98 56.09 65.62 60.48 54.33 64.66 59.04 

−0.99 −0.52 0.77 −8.20 −1.65 −5.27 −9.96 −2.61 −6.71 

Dam break 80.05 88.64 84.13 
78.00 88.36 82.86 78.41 88.65 83.22 68.08 86.52 76.20 

−2.05 −0.28 −1.27 −1.64 0.01 −0.91 −11.97 −2.12 −7.93 

Others 40.38 33.82 36.81 
36.26 31.86 33.92 32.49 30.81 31.62 35.48 32.15 33.73 

−4.12 −1.96 −2.89 −7.89 −3.01 −5.19 −4.90 −1.67 −3.08 

Average 68.97 54.67 59.67 
66.47 53.99 58.30 62.61 53.15 56.17 60.25 52.52 54.60 

−2.50 −0.68 −1.11 −6.36 −1.52 −3.50 −8.72 −2.16 −5.07 
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5.2.4 Sensitivity analysis for the thresholding quantile 

Since there is no supervised training process, the zero-shot/unsupervised detection methods always output 

a continuous change density map, which requires a thresholding quantile to be converted into a binary map. 

The used 0.94 quantile was determined from the sensitivity analysis shown in Fig. 11. The quantile was varied 

from 0.90 to 0.99, corresponding to the statistical anomaly ratio in Section 3.2. With the increase of the 

quantile, it becomes more difficult to keep most anomaly regions detected, and the F1-scores of most anomaly 

categories decrease. Despite the overall decreasing trend, the promotion of introducing time-series 

information also exists, which is shown as the colored regions in Fig. 11. By averaging all the anomaly 

categories (i.e., the gray area), we found that the proposed AnomalyCDM was robust to the threshold change 

before the 0.96 quantile, and the highest F1-score was obtained with the 0.94 quantile. 

5.2.5 Sensitivity analysis for the inference patch size 

Each collected anomaly event in the AnomalyCDD dataset covers a large-scale scene, with the image 

width/height mostly larger than 10000 pixels. Limited by the memory usage, the original images have to be 

cropped into patches and inferred in a non-overlapped manner, where the cropped patch size is an important 

hyper-parameter. We conducted a sensitivity analysis for the patch size, and the results are listed in Table 5. 

We varied the patch size from 512 to 4096 pixels and recorded both the accuracy and average processing time, 

  
(a) (b) 

 

Fig. 11. Sensitivity analysis for the effect of the thresholding quantile on the detection performance (F1-score). With the 
increase of the quantile, the promotion of introducing time-series information also exists, despite the overall decreasing trend. 
By averaging all the anomaly categories (gray lines), the 0.94 quantile achieves the highest and most robust performance.  
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considering the efficiency. For the different anomaly categories, the optimal patch sizes are different when 

comparing the accuracy only. For example, a patch size of 1024 pixels is optimal for the explosion and 

collapse categories, while 4096 pixels is optimal for the landslide category. It can be deduced that landslide 

events always have a larger damaged area than explosion events, and a patch size of 1024 pixels may not 

provide the required contextual information. With the doubling of the patch size, the processing time is 

reduced by half. Processing a single anomaly event takes around 1 hour with a patch size of 512 pixels, but 

only 10 minutes with a patch size of 4096 pixels. Although the patch size of 4096 pixels has a faster processing 

speed and higher average F1-score, we found that this setting performed worse in four categories than the size 

of 2048 pixels, and an improvement in average accuracy is only seen in the two categories of landslide and 

others. Thus, we finally chose a patch size of 2048 pixels, considering the performance on the different 

categories. 

5.2.6 Sensitivity analysis for the representation space 

The zero-shot detection performance of AnomalyCDM is supported by the general representation of the 

SAM foundation model, where the images are all mapped into the representation space and compared. In fact, 

AnomalyCDM is a framework that is compatible with different visual representations, and a more general 

Table 5 
Sensitivity analysis for the effect of the inference patch size on the detection performance. 

Anomaly category 
512 1024 2048 4096 

R P F1 R P F1 R P F1 R P F1 

Explosion 49.81 34.12 40.50 60.38 38.74 47.20 55.68 36.30 43.95 52.06 37.77 43.78 

Collapse 73.96 38.42 50.57 80.76 37.16 50.90 76.03 36.20 49.04 72.26 35.19 47.33 

Landslide 62.04 53.91 57.69 71.28 56.18 62.83 72.51 52.07 60.61 76.89 58.89 66.70 

Fire 55.15 49.38 52.11 59.30 53.06 56.01 64.96 54.26 59.13 57.83 53.60 55.64 

Dam break 65.60 85.76 74.34 66.27 86.36 75.00 69.77 87.68 77.71 62.96 87.77 73.32 

Others 27.84 35.70 31.29 38.71 42.42 40.48 42.43 44.14 43.27 49.39 46.29 47.79 

Average 55.73 49.55 51.08 62.78 52.32 55.40 63.56 51.78 55.62 61.90 53.25 55.76 

Time 3813.33 s 2092.50 s 1230.64 s 553.77 s 
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representation could further enhance the performance. In this section, we describe how we investigated the 

influence of different representation spaces, i.e., the Contrastive Language-Image Pre-Training (CLIP) vision-

language model (Dong et al., 2024; Radford et al., 2021) and the SAM, which are two visual foundation 

models that have shown a state-of-the-art zero-shot ability in many domains. The new representation was used 

to discriminate the anomalous changes in the second stage. Two CLIP versions were tested with ResNet-50 

and ResNet-101 backbones. The contextual information of segmented instances was also provided when using 

CLIP to obtain the embeddings. For the SAM, the effect of the representation space being processed by the 

neck module was also tested, which corresponded to two different representation spaces. The results are 

reported in Table 6. After removing the neck module in the SAM, the performance clearly drops (the average 

F1-score is reduced from 55.62 to 25.54), showing the necessity of the neck module. The CLIP model with 

ResNet-50 as the backbone also shows a satisfactory performance, with an average F1-score of 48.47. The 

lower performance may be caused by the different pre-training processes, where CLIP is trained for 

completing the image-level classification task, while the SAM is trained for the dense segmentation task. 

Compared to the ResNet-50 backbone, the ResNet-101 backbone performs unexpectedly worse, which seemly 

violates the scaling law. This is in fact caused by the property of the anomaly change detection task. With the 

Table 6 
Sensitivity analysis for the effect of different representation spaces on the detection performance. The latent space of the SAM 
with the neck module shows an obvious superiority. 

Anomaly category 
CLIP-ResNet-50 CLIP-ResNet-101 SAM-w/o neck SAM-w neck 

R P F1 R P F1 R P F1 R P F1 

Explosion 54.39 36.76 43.87 50.45 35.16 41.44 20.30 21.03 20.66 55.68 36.30 43.95 

Collapse 64.32 33.33 43.91 66.04 32.69 43.74 33.46 12.92 18.64 76.03 36.20 49.04 

Landslide 51.82 44.38 47.81 44.35 42.68 43.50 15.36 25.16 19.07 72.51 52.07 60.61 

Fire 54.07 49.44 51.65 50.64 46.68 48.58 23.46 37.96 29.00 64.96 54.26 59.13 

Dam break 57.11 83.43 67.80 54.82 83.19 66.09 29.60 69.59 41.53 69.77 87.68 77.71 

Others 34.92 36.65 35.77 32.10 36.90 34.33 19.85 31.41 24.33 42.43 44.14 43.27 

Average 52.77 47.33 48.47 49.73 46.22 46.28 23.67  33.01  25.54  63.56 51.78  55.62  
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deepening of the network layers, the features extracted by ResNet-101 become more high level and contain 

more semantic information. However, the anomaly change detection task in this study is at a middle level, 

and too much semantic information can decrease the performance. Thus, AnomalyCDM finally uses the SAM 

representation space after the neck module in the second stage. 

5.2.7 Sensitivity analysis for the distance metric 

At both stages of AnomalyCDM, the visual representations were compared in the different time steps. In 

Section 5.2.6, we described how we tested the influence of the representation space. This section provides a 

sensitivity analysis of different distance metrics for the representation comparison. The results are provided 

in Table 7, where the classical L2 norm, L1 norm, and cosine distances were tested. From the perspective of 

the average accuracy, the influence of the different metrics is relatively small, compared to the different 

representation spaces. However, the cosine distance metric can bring an overall better performance, especially 

for the explosion anomaly category. 

6. Conclusion  

As a new technique for the Earth anomaly detection task, AnomalyCD learns to distinguish anomalous 

changes through the use of historical monitoring images. Compared to the existing classification and change 

detection methods, AnomalyCD does not need human supervision and can be applied to anomalies with few 

samples or unknown anomalies. Compared to some of the unsupervised methods (Wu et al., 2023), 

Table 7 
Sensitivity analysis of the effect of different distance metrics on the detection performance. From the perspective of average 
performance, no obvious difference can be observed, but the cosine distance metric shows a slightly better performance. 

 Explosion Collapse Landslide Fire Dam break Others Average 

 R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 

L2 norm 49.87 35.01 41.14 73.28 35.48 47.81 73.37 52.01 60.88 66.69 54.59 60.04 68.68 87.37 76.91 42.07 44.52 43.26 62.33 51.50 55.01 

L1 norm 49.61 34.99 41.04 73.00 35.29 47.58 72.93 52.02 60.72 65.28 54.77 59.56 69.28 87.57 77.36 42.11 43.81 42.94 62.04 51.41 54.87 

Cosine  55.68 36.30 43.95 76.03 36.20 49.04 72.51 52.07 60.61 64.96 54.26 59.13 69.77 87.68 77.71 42.43 44.14 43.27 63.56 51.78 55.62 
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AnomalyCD has the ability to suppress the normal changes and reduce the false alarms. To benchmark the 

AnomalyCD technique, the anomaly change detection dataset (AnomalyCDD) was constructed with a high 

spatial resolution (0.15–2.39 m/pixel), time-series images (3–7 time steps), and large-scale (1927.93 km2 in 

total) observations. As a baseline model for the built benchmark, AnomalyCDM was further developed, which 

can detect unseen and varied anomalies in a zero-shot manner with the extracted temporal representation from 

the SAM.  

Despite the improvement, AnomalyCDM is a preliminary implementation of the AnomalyCD technique. 

For example, the normal changes are extracted and compared for each instance separately in AnomalyCDM, 

where the learned normal change patterns from different locations may also be helpful for the current instance, 

but are not utilized. Furthermore, a dynamic threshold rather than a fixed quantile will also be needed in a 

more powerful implementation. 
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