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Abstract— Positive and unlabeled (PU) learning is aimed at
building a binary classifier to distinguish the target from the
background using only the known positive samples, which is
an advanced solution for the hyperspectral target detection
(HTD) task. However, when PU learning (PUL) meets complex
hyperspectral scenarios, there are two main challenges: 1) How
to estimate the class prior accurately? The class prior, i.e., the
target proportion, is an important prior for PUL to learn the
discriminant boundary, but it is difficult to estimate in hyper-
spectral imagery, due to the interclass spectral similarity and
2) How to remove redundancy and improve the discriminative
features of the target? The diagnostic spectral feature extraction
is important for the weakly supervised PUL models as it can
help with separating the target from the background. In this
article, to tackle these challenges, a robust PUL framework
with key band selection (PU-KBS) is proposed, which is mod-
eled as an end-to-end and class prior free PUL framework,
where the accurate class prior and the most discriminative key
band subset are jointly initialized and iteratively updated until
reaching the optimal result by evolutionary search. Meanwhile,
a deep PUL detector is introduced for guiding the subsequent
search direction and discriminative deep feature extraction.
The proposed PU-KBS framework was verified using different
hyperspectral datasets, where accurate class prior estimation,
diagnostic spectral characteristics, and robust detection results
could be obtained simultaneously by the PU-KBS framework.
Furthermore, the improvement in band selection interpretability
and detection performance was proven experimentally.

Index Terms— Hyperspectral image, one-class classification
(OCC), positive and unlabeled learning (PUL).
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NOMENCLATURE

NP Population size.
N Number of bands.
M Number of selected bands.
E Number of employed/onlooker bees.
S Number of scout bees.
xim mth band selected from the ith solution.
U ∈ R1×M Upper bounds of the band subspace and class

prior.
L ∈ R1×M Lower bounds of the band subspace and

class prior.
Fi i th cost function of the possible solutions.
πP Class prior of PU learning.

I. INTRODUCTION

HYPERSPECTRAL imagery collects abundant spectral
information of different ground objects, so it has unique

advantages in target detection, with broad application potential
in fields such as camouflage target recognition [1], specific
crop extraction [2], plant disease detection [3], invasive species
identification [4], and disaster area extraction [5].

In the past decades, various methods have been proposed for
identifying a single target/class of interest from hyperspectral
remote sensing images, which is essentially a binary classifi-
cation (BC) problem [6], i.e., separating the target class from
the background. However, in complex scenarios, it is difficult
to annotate complete negative samples containing all the
background classes, resulting in only positive samples being
obtained [7]. Assuming that only the spectra of the positive
class are known, essentially, it is a one-class classification
(OCC) problem [6] while is defined as a hyperspectral target
detection (HTD) problem [8] in the hyperspectral search field,
both of which are aimed at building a binary classifier with
only target/positive samples. Their differences and details are
discussed in Section II-B.

In this study, we mainly focus on OCC methods for iden-
tifying a specific target/class from the background, which can
be roughly divided into main categories, according to the
data used in the training: 1) the first category is positive
(P) learning, where only positive samples are involved in the
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training, e.g., one-class support vector machine (OCSVM) [9],
support vector data description (SVDD) [10] and 2) the second
category is positive and unlabeled (PU) learning, where unla-
beled samples are introduced along with positive samples to
train a binary classifier [11], [12], e.g., biased SVM (BSVM)
[7], classifier-independent PU learning (PUL) [13], positive
and background learning (PBL) [14], deep PUL (deepPUL),
deep PBL (deepPBL) [15], unbiased PU (uPU) [16], and
nonnegative PU (nnPU) [17]. Compared with P learning, PUL
can further improve the identification accuracy since it mines
additional information for the background/negative class from
a large amount of unlabeled data, which helps to train a more
robust binary classifier.

Multiple ways have been developed for mining negative
priors/knowledge in PUL, e.g., selecting negative samples with
high confidence from unlabeled data [18], a biased classi-
fier [7], post-threshold calibration [13], [14], [15], and risk
estimation [16], [17]. However, most PUL methods require
prior knowledge of the target, termed the class prior (πP),
which is the proportion of the target in the scene [19]. This
is assumed to be known to help to learn an optimal PU
classifier. Taking the widely used and advanced unbiased risk
estimation PUL method [17] as an example, the class prior πP

is an important parameter for PUL since it is directly used in
calculating the risk, which varies from 0 to 1.

When applying PUL in a complex hyperspectral remote
sensing scenario that features abundant land-cover classes in
the background and high interclass spectral similarity, e.g.,
agriculture and forestry, there are still two main challenges
encountered: 1) How to estimate the class prior accurately
in a complex scene? As proved in the risk defined in (2),
the class prior (πP) is a crucial parameter. The experiments
depicted in Fig. 1(a) also illustrate that the accuracy of a
PU classifier depends on the estimation of πP . πP is usually
defined manually in advance, but can be inaccurate in real
applications [20] and 2) How to remove redundant informa-
tion and improve the discriminative features of the target?
Hyperspectral data contain a significant amount of redundant
information, and selecting key features is crucial for applying
PUL to hyperspectral imagery, since it is a weakly supervised
task [21]. As an example, as shown in Fig. 1(b), the accuracy
of the PU classifier is also sensitive to the number of bands,
and the best accuracy is not obtained in the case of using all
of the bands.

Although the two main challenges could be roughly solved
by class prior assumption and band selection method respec-
tively, the two-stage solution would cause error accumulation
and may further affect the detection performance. Considering
class prior estimation and key band selection (KBS) are
essentially both parameter optimization problems, it could be
modeled in the same PUL framework as a multiparameter
joint optimization problem, which can avoid cumulative errors
through an end-to-end approach, helping with enhancing the
separation of target and background.

In this article, to address the above problems, we propose
a robust PUL framework with KBS (PU-KBS) for one-class
hyperspectral image classification, which is aimed at mod-
eling and solving three tasks in one framework jointly, i.e.,

Fig. 1. Main challenges when applying PUL to hyperspectral imagery.
(a) Class prior estimation. (b) Redundant information removal.

PUL, class prior estimation, and KBS. Specifically, for a
hyperspectral image and several positive samples, PU-KBS
can autonomously obtain a robust PU classifier, an accurate
class prior, and a key band subset for the target of interest.
In PU-KBS, to extract discriminative features of the target and
reduce the redundancy, a KBS operation is first designed to
find the most discriminative and diagnostic spectral bands of
the target, while a deep PU classifier follows to further extract
the discriminative deep features. As for the class prior, it is
modeled as a parameter search problem, which is encoded
with the key bands’ numbers in the same vector, randomly
initialized and iteratively updated until reaching the optimal
result. By wrapping the KBS and the class prior estimation
together with a deep PU classifier, the proposed PU-KBS
framework can be treated as a class prior free PU classifier,
as well as a target detection driven band selector. The main
contributions of this work are summarized as follows:

1) A Robust PUL Framework: The proposed PU-KBS
framework is designed for complex scenarios, and can
autonomously identify targets in a data-driven manner
without any manual prior. It is more robust than the
advanced HTD and OCC methods, which was proven
in the experiments conducted in this study.

2) Joint Estimation of the Class Prior with PUL: The
class prior, i.e., the proportion of the target, is mod-
eled and jointly estimated in PU-KBS. The experiments
conducted in this study showed that the class prior
estimation and the PU classifier can promote each other,
and can reach an optimal result simultaneously.

3) Joint Determination of the Key Band Subset with PUL:
The diagnostic spectral characteristics of the target of
interest can be jointly obtained in PU-KBS. Ablation
experiments confirmed that joint modeling is better than
separate modeling. In addition, the selected key bands
are shown to increase the separability of the target and
background.

The rest of this article is organized as follows. Section II
gives the related background. Section III describes the general
idea and the details of the proposed PU-KBS framework.
The experiments and analysis with hyperspectral datasets and
practical hyperspectral data are presented in Section IV, while
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the ablation experiments and a discussion are presented in
Section V. Finally, Section VI draws our conclusion.

II. RELATED WORKS

A. OCC for Hyperspectral Imagery

OCC is an efficient specific target class extraction method
that learns a binary classifier with only the target of interest
samples, where the class of the target of interest can be
regarded as the positive class, and the other kinds of classes
are all classified as the negative class. OCC classifiers can be
divided into two categories, according to whether they need
unlabeled samples for training: 1) positive (P) learning classi-
fiers and 2) PUL classifiers. The detailed formula for OCC is
expressed as follows. x denotes the input image, y = 1 denotes
the positive target data, and y = 0 denotes the other negative
data. Therefore, the marginal distribution of the positive class,
negative class, and unlabeled data (both positive and negative)
can be denoted, respectively, as PP(x) = P(x |y = 1),
PN (x) = P(x |y = −1), and P(x). πP = P(y = +1)

represents the class prior. The objective of a P classifier is to
learn a binary classifier f from the positive samples PP(x),
while the objective of a PU classifier is to learn a binary
classifier f from the positive samples PP(x) and unlabeled
samples P(x).

1) Positive (P) Learning: P learning only requires positive
examples for training, in methods such as OCSVM and SVDD.
SVDD distinguishes the target by modeling the minimum
volume hypersphere in the feature space, while OCSVM
maximizes the distance from the separating hyperplane to
the origin in the feature space corresponding to the kernel.
Deep SVDD (DSVDD) [22] was further derived with the
development of a deep learning model. However, the decision
boundary of P classifiers is difficult to find, and empirical
parameters are also required to balance the degree of fit.

2) PUL: In order to further improve the OCC accuracy,
unlabeled data can be added to help the training, which is
denoted as PUL [23]. The unlabeled data can include both
positive and negative samples.

PUL [11], [12] has already been applied in many fields
of remote sensing. The representative heuristic method uses
a two-step strategy to identify reliable negative samples (or
positive samples) from unlabeled samples and then trains a
binary classifier, using the positive samples as well as the
selected negative samples. However, the detection result can
be seriously affected by the reliability of the selected negative
samples.

Another one-step approach is to train a binary classifier
with both PU samples, treating the unlabeled samples with
smaller cost weights as noisy (positive samples included)
negative samples. This approach is used in methods such as
the BSVM method, but extra training is needed for the cost
parameter estimation. Based on the assumption of unlabeled
samples as weighted positive samples and negative samples,
a PUL framework was introduced. However, this method
may be contrary to the actual data distribution, owing to
the assumption of both types of samples being completely
random. The PBL [14] framework was further developed,

which is more suitable for application in remote sensing,
but it does rely on a constant to calibrate the positive class
posterior probability. These methods can be transformed into
the deepPUL and deepPBL methods [15] by introducing a
deep learning classifier.

Risk estimation is a necessary part of the PUL task. In the
ideal case where the negative samples are known, the risk esti-
mator of the traditional Bayesian binary classifier is defined as

R̂P N ( f ) = πP R̂+

P ( f ) + (1 − πP)R̂−

N ( f ) (1)

where f represents the classifier, R̂+

P ( f ) and R̂−

N ( f ) denote
the risk of classifying positive samples as positive and clas-
sifying negative samples as negative, respectively. However,
in PUL, due to the lack of negative samples, referring to the
equation P(x) = πp PP(x) + (1 − πp)PN (x), R̂−

N ( f ) in (1) is
replaced using R̂−

U ( f ) and R̂−

P ( f ) in the following equation,
which represent classifying unlabeled samples as negative and
positive samples as negative, respectively, and are weighted
by the class prior πP :

R̂PU( f ) = πP R̂+

P ( f ) + R̂−

U ( f ) − πP R̂−

P ( f ) (2)

which represents the unbiased risk estimator (uPU) of PUL.
3) The Problem When OCC is Applied to Hyperspectral

Imagery: All of the one-step PUL-based OCC methods men-
tioned above require a class prior to provide help for the
negative sample acquisition, which assigns weights to the unla-
beled data as a preprocessing step [11]. Meanwhile, the true
value of the class prior is unknown in practical applications,
and is generally estimated with an estimation method. How-
ever, the class prior assumption is usually uncertain, due
to the spectral variability of hyperspectral imagery, and this
estimation error can affect the OCC results.

B. OCC Versus Other Related Concepts

For identifying a specific target, there are some similar con-
cepts to OCC in the field of hyperspectral image processing,
such as BC and HTD. In this part, we mainly focus on the
comparison of these concepts and highlight the differences
between them.

1) OCC Versus BC: OCC is a special case of BC to
solve the problem of single-class identification. As shown in
Fig. 2(a), supervised BC learns a standard binary classifier
using both positive and negative annotations to distinguish
between the positive class and negative class [24]. In contrast,
as shown in Fig. 2(b), OCC learns a binary classifier using only
positive annotations, to distinguish the target (positive class)
from the background (negative class). Therefore, OCC is a
kind of weakly supervised BC task, which is more challenging,
due to the lack of negative samples [11].

In complex scenes, OCC can greatly save on the annotation
workload since only a small number of positive samples are
required [2]. Meanwhile, in contrast, supervised BC usually
requires annotation of all the negative classes, which is
time-consuming and difficult to achieve in reality [25]. For
example, when mapping invasive tree species in a forest,
in addition to the samples of the target of interest, a complete
set of negative samples containing all the background tree
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Fig. 2. Comparison between OCC and related concepts (a) BC, (b) OCC, and (c) HTD.

species is required for supervised BC, which is costly for
labeling. In contrast, OCC has a natural advantage in complex
scenes [4].

2) OCC Versus HTD: As for HTD, only the HTD methods
using partial target knowledge [26] are compared in this
section. As shown in Fig. 2(c), first, the HTD methods
usually generate an intensity or soft classification map by
the detector [27], where the target responses are enhanced
while the background responses are suppressed [8], which is
followed by additional thresholds to sperate target from the
background [28]. This is because HTD was originally used to
identify targets from low spatial resolution data with mixed
pixels. In contrast, OCC methods are aimed at obtaining a
certain decision boundary, so that their output is usually a
hard decision map of targets [7]. Generally speaking, OCC
and HTD are similar tasks that are aimed at separating the
target (positive class) from the background with only positive
samples or spectral signatures. OCC is a broader concept in
machine learning, with extensive applications in the fields of
text classification [29], medical diagnosis [30], recommenda-
tion systems [31], etc.

With the development of hyperspectral imaging and plat-
forms, hyperspectral images with a large volume and high
spatial resolution are leading to new challenges, such as the
severe intraclass spectral variability and interclass spectral
similarity [32], [33], [34], and thus a more robust target
detector is necessary. Taking invasive tree species mapping
as an example, the spectra of the target class have high
variability due to the lighting, shadows, and the texture of the
canopy, while the spectra between the target and background
(other tree species) have high spectral similarity, due to their
similar basic material compositions [35], [36]. Recently, deep
learning has shown potential due to its automatic feature
extraction ability [27], [37]. The advanced deep PUL-based
OCC methods are possible solutions for complex scenarios,
where the substantial unlabeled samples contain both positive
and negative information, which helps with training a more
robust classifier. Deep features can also suppress the spectral
variability to some extent [3], [38], and could well be a major
trend of robust HTD in the future.

III. PROPOSED METHOD

A. PU-KBS Framework

The robust PU-KBS (see Fig. 3) is discussed in this section,
which is aimed at automatically determining the class prior and

the key bands during the OCC process. As shown in Fig. 3,
for a given hyperspectral cube X = [x1, . . . , xN ] ∈ RP×N (P
pixels and N bands) and a few positive samples (unknown
class prior πP), the proposed PU-KBS framework can obtain
the optimal results and the key bands that reveal the diagnostic
features of the target of interest. Meanwhile, the essential
parameter of PUL—πP —is encoded and jointly estimated
during the learning process. Specifically, PU-KBS includes
two main phases: 1) a class prior πPi and a band subset
Xi = [x1, . . . , xM ] ∈ RP×M are first randomly initialized
within the search space to allow the deep PUL network to learn
a classifier and 2) search and update of the new class prior
πPi+1 and the new band subset Xi with the current optimal
fitness by the use of evolutionary search. These phases are
iterated until an optimal PU classifier is achieved.

It should be noted that the proposed method mainly focuses
on the following two aspects. The first aspect is how to
estimate the class prior jointly during PUL. This is an impor-
tant prior and sensitive parameter for PUL, which is usually
assumed to be known but is very hard to estimate manually.
As for PUL, an important feature of our work is the exploration
of PUL with a known class prior to PUL without a class prior,
instead of designing a new PU network. Second, PU-KBS is
aimed at obtaining the key bands of the target of interest,
which are discriminative compared to the background. This,
on the one hand, can help to reduce the redundant information
for PUL and, on the other hand, the central wavelength of the
optimal bands has guiding value for the design of an economic
multispectral sensor aimed at specific targets.

B. Encoding and Initialization of the Class Prior and Key
Bands for Joint Learning

In order to optimize the class prior πPi and key band subset
xi ∈ R1×M simultaneously, the indices for the πPi value
(the (M + 1)st dimension) and the positions of each key
band (the first M dimensions) are encoded in the modeling
process, which are combined into the vector xim and randomly
initialized and iteratively optimized together in their respective
search spaces. In addition, the search space for the key bands is
determined by a coarse-to-fine neighborhood grouping strat-
egy, which can help to speed up the search and reduce the
possibility of correlation within the selected bands.

Specifically, since a large search space for the spectral range
would lead to low search efficiency, in order to accelerate
the speed of the search, as shown in Fig. 4, a coarse-to-fine
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Fig. 3. Framework of the proposed robust PU-KBS. Two main phases are included: 1) encoding and initialization phase and 2) search and update phase.

Fig. 4. Schematic of neighborhood band grouping.

neighborhood band grouping [39] strategy is used to determine
the limit of the selected key band subset by fully explor-
ing the bands’ spectral contextual information.

The neighborhood band grouping can be roughly divided
into coarse and fine grouping parts. For the coarse band
grouping, the band space of X is divided into M coarse
groups as evenly as possible, which is a uniform grouping
process. For the fine band grouping, the aim is to obtain a
more accurate grouping result by refining the coarse result
based on the similarity of adjacent bands. By comparing the
similarity between the current band and the cluster center by
the Euclidean distance, the band group label T ∈ R1×N is
iteratively updated as the nearest label, so as to redivide the
band space with lower similarity and redundancy. The bands
of the mth group can be obtained from the following equation:

Xm = {xi }, Ti = m. (3)

Therefore, the initial position of each band is determined
within the search subspace, and for the class prior parameter,
this is (0,1). The 0th generation of solutions is initialized
randomly between the upper bound U ∈ R1×M and lower
bound L ∈ R1×M , which can be defined as shown in the
following equation:

xim = Lm + rand(0, 1)(Um − Lm) (4)

where i = 1, 2, . . . , N P; m = 1, 2, . . . , M + 1. There are NP
solutions, each containing M selected bands, plus an increased
dimension for the class prior. We take the i th solution as an
example, where xim denotes the mth band selected from its

1http://rsidea.whu.edu.cn/resource_sharing.htm

subspace for the band subset xi ∈ R1×M in consequence, while
xi M+1 indicates the estimated class prior πPi .

C. Deep PUL Classifier

Any detection model can be embedded in the detection
phase of the proposed PU-KBS framework, which can help
to obtain the optimal search parameters (class prior and key
band subset) as well as the optimal training parameters for
the detector by guiding the direction of the joint optimization
process. In addition, synthesizing the previous analysis and
discussion (in Section II-B), due to the excellent performance
of the risk estimation-based PUL methods, a deep PUL
network module [4] (the ITreeDet code is available at) is
introduced as the target detector for the optimization function
calculation, which can automatically extract robust features
from the imagery, so as to reduce the impact of the spectral
variability problem.

Specifically, as presented in (5), the risk estimator is set
as absNegative (absPU), which can avoid network overfitting
for PU samples by keeping the risk estimation of the negative
class greater than 0 through the absolute term. Meanwhile, for
the connection of the two main phases, the network input Xi is
filtered from the original input X by the searched candidate M
bands, and the searched class prior πPi is used as the critical
parameter of PUL

R̃PU( f ) = πP R̂+

P ( f ) +

∣∣∣R̂−

U ( f ) − πP R̂−

P ( f )

∣∣∣. (5)

In general, the deep PU network regards the input candidate
class prior and key band subset as the model parameters and
image data reference, respectively. Meanwhile, their detection
performance is used as a guide for the further search direction.

D. Searching Class Prior and Key Band Search by
Evolutionary computation

Although the current optimal detection result can be
obtained by inputting the initial candidate solution into the
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deep PU network, it will not be the global optimal solution.
The deep PU classifier is still sensitive to these parameters
(class prior and key band subset). Therefore, it is necessary
to continue updating them as the input classifier parameters,
which can further optimize the training parameters of the
classifier and obtain a better detection result. For the updating
of these parameters, evolutionary computation (EC) [40] is
introduced for the optimization of the encoded vector xim ,
which is achieved by estimating the global optimal solu-
tion through greedy search within the iterations. Two main
problems are to be solved, including: 1) how to build the
optimization function and 2) how to realize the optimization
search. The optimization function is based on a new discovery,
while the optimization search is achieved by an advanced
evolutionary search method.

1) Optimization Function: In order to obtain the optimal
parameters (class prior and key band subset) and balance the
accuracy metrics, a new optimization function is designed
using three evaluation metrics, based on the discovery of the
class prior [41], which is also the bridge between the detection
model and the optimization search. The involved metrics are
the precision (P), recall (R), and F1-score (F1), calculated
by the true positive (TP), false positive (FP), and false negative
(FN) pixels. The corresponding formulas and the influence of
the class prior on the three metrics at an interval of 0.01 are
shown in Fig. 5. As shown, when the estimated πP is less than
the truth, P is larger than R. In contrast, when the estimated
πP is larger than the truth, P is smaller than R. The larger
the estimated bias, the worse the F1, i.e., the F1 is basically
optimal when the estimated πP approximates the truth. As per
these change rules, the optimization function (OPT) can be
calculated as shown in the following equation:

OPT

= max
[

2TP
2TP + FN + FP

−

∣∣∣∣ TP(FN − FP)

(TP + FP)(TP + FN)

∣∣∣∣] (6)

when the class prior approaches the truth, the absolute value
of (precision–recall) is smaller, which can be used as an
interference term to help the EC search quickly and accurately
locate the actual range of the class prior, while also helping
with balancing the P and R values, thus further improving the
detection results.

2) Optimal Band Subset and Class Prior Search: For the
joint optimization of the class prior and key bands, EC search
is introduced to automatically optimize these parameters
within the set search space iteratively by the designed opti-
mization function. Here, we take the artificial bee colony
(ABC) algorithm [42] as an example, due to the advantage
of only a few insensitive parameters being involved.

There are three kinds of bees involved and exchanging
information in the ABC algorithm. Employed bees search and
update each position of the solution in the neighborhood based
on the memorized quality and position information. Onlooker
bees receive the memorized information and then choose
the solution to exploit by its quality using roulette wheel
selection. Scout bees emerge when the trail counter l reaches
or exceeds the limit L = round(0.6ME), where round(.) means
the rounding operation. The i th optimization function of the

Fig. 5. Influence of the class prior to the detection metrics.

possible solutions is recorded as OPTi , calculated by the
accuracy combination of the detection model. The updated
solutions for the iterations in the neighborhood are produced
as shown in the following equation:

xnew
im = xim + ϕ(xim − x jm), j ̸= i (7)

where ϕ is a random number uniformly distributed in the
range [−1,1] and j is a random solution number that is
different from i . If the position of the new solution breaks
the bound constraint, a bound handling process is performed,
i.e., if the position is over/under the upper/lower bounds, it is
set as the corresponding bound value. The greedy selection
between the original and new solutions is applied using the
fitness (8) evaluated by the optimization function (6), so as
to update the memorized solution position to a better one,
where mean(.) is the averaging operation in (8). Meanwhile,
the selection probability (9) is determined by the fitness, and
the trial counter l for each solution is reset to 0 if the position
is changed; otherwise, the value is increased by one

Fi = e
OPTi

mean(OPT) , i = 1, 2, . . . , N P (8)

P Bi =
Fi∑N P

i=1 Fi
. (9)

The employed, onlooker, and scout bees exchange and cycle
until the maximum iterations Iter is reached, where the best
band subset xb ∈ R1×M and the most accurate class prior πPb

are output as the optimal solution.

E. Implementation Issues

Based on the above two phases, a robust PU-KBS is
proposed. According to the band subset size M , the first
M searched upper U and lower L bounds of the bands are
obtained by coarse-to-fine neighborhood grouping, while the
last dimension for πP is in the range of [0, 1]. The fitness of the
possible EC search solution is calculated by the optimization
function of the detection model, which guides the further
search direction. After reaching the set generation Iter of the
EC search (ABC algorithm), the optimal band subset and the
estimated class prior to within the iterations are obtained using
the validation set. By verification with the test set under the
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TABLE I
DETAILS OF THE HYPERSPECTRAL IMAGE DATASETS

Epochs iterations setting, the corresponding evaluation indica-
tors and detection result are the final output. The pseudo-code
for the PU-KBS framework is listed in Algorithm 1.

Algorithm 1 Pseudo-Code of the PU-KBS Framework
1 Input X ∈ RP×N , M ;
2 Partition bands into subspaces as (3), determine

boundary U and L;
3 While t < Iter

Initialize solutions (4), calculate loss function (6), set
t=0;

4 For employed bees, update solutions as (7), update
trials l;

5 For onlooker bees, update solutions as (7) and (9),
update l;

6 If l≥L
For scout bees, initialize solutions as (4), reset l=0;

7 t=t+1;
End While

8 Output: xb, πPb, detection accuracy and detection
result.

In the designed framework, subspace grouping helps reduce
the possibility of similarity within the selected bands and
improves the search efficiency. The ABC algorithm involves
only a few parameters and also has a low sensitivity to these
parameters, and the positive and negative feedback mechanism
effectively avoids falling into local optima. What is more,
the ABC algorithm is suitable for solving high-dimensional
problems. In the deep PUL network, only the labeled samples
of the target class and unlabeled information are required for
the training, and the robust feature extractor can decrease the
impact of spectral variability.

IV. EXPERIMENTS AND ANALYSIS

A. Hyperspectral Datasets

In order to prove the universality of the proposed frame-
work, two types of hyperspectral datasets were used in the
experimental validation: the WHU-HI-Longkou dataset and
the Indian Pines dataset at the dataset level and the pine wilt
disease (PWD) detection dataset at the application level. The
details of the hyperspectral image datasets are given in Table I.

1) WHU-Hi-LongKou Dataset: The WHU-Hi-LongKou
dataset [32] is a standard dataset for precise crop clas-
sification. The broad-leaf soybean class was chosen as

Fig. 6. WHU-HI-LongKou dataset. (a) Image. (b) Ground truth. (b) Spectral
curves.

Fig. 7. PWD dataset. (a) Image. (b) Training set. (c) Test set. (d) Spectral
curves.

the target class, for which an overview and the spectral
curves are provided in Fig. 6. The dataset details are
provided in Table I.

2) PWD Detection Dataset: PWD is a widespread and
hard-to-control irreversible disease leading to rapid wilt-
ing of the infected pine trees, the spread of which
has caused serious damage to both the economy and
ecological security [43]. Therefore, early prevention
and treatment are particularly important. Due to the
large-scale and multitemporal properties, remote sensing
methods have gradually taken the place of traditional
manual methods of detection. The detection of pine
trees with PWD is a kind of target detection problem
at the application level. The PWD dataset (see Fig. 7)
was acquired at Yantai Hill, Hexi, Shandong, China [3].
The dataset details are provided in Table I. The main
pine species in the study area are Pinus massoniana
Lamb and Pinus armandii Franch, some of which have
mild or moderate PWD (yellow/brown needles), with the
healthy pines having green needles. In addition to the
pine species, there is also soil, road, vegetation (e.g.,
grasses and shrubs), etc.

3) Indian Pines Dataset: Indian Pines dataset is a classical
hyperspectral dataset containing 16 land-cover classes
with similar spectrum. The hay-windrowed class is
selected as the target class, for which an overview and
the spectral curves are provided in Fig. 8. The dataset
details are provided in Table I as well.

B. Experimental Settings

1) Comparison Methods: We compared the proposed
PU-KBS framework with the classical and advanced
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Fig. 8. Indian Pines dataset. (a) Image. (b) Ground truth. (b) Spectral curves.

P, PU, and HTD methods that were mentioned in
Section II, including: 1) P learning classifiers, i.e.,
OCSVM and DSVDD; 2) PUL classifiers, i.e., BSVM,
PUL, PBL, deepPUL, deepPBL, and the risk estima-
tion based methods—uPU and nnPU; and 3) HTD
methods, i.e., the matched filter (MF) [44], constrained
energy minimization (CEM) [45], ensemble-based CEM
(ECEM) [46], and a dual sparsity constrained (DSC)
approach [47]. The thresholds of the HTD methods were
selected using Otsu’s thresholding method [48].

2) Metrics: Four evaluation metrics are used in this article
to evaluate the detection performance: precision (P)

(10), recall (R) (11), F1-score (F1) (12) (as described
in Section III-D), and the area under curve (AUC).
Precision represents the user’s accuracy, which indicates
the correct detection rate of the pixels that are certified
as positive. Recall is the producer’s accuracy, which
can reflect the positive proportion of the pixels that
are correctly detected. The F1-score is the harmonic
average of the precision and recall, which can measure
the comprehensive result of the model. The AUC metric
computed by the receiver operating characteristic (ROC)
curve is mainly used to assess the model’s generaliz-
ability and confidence. Due to the comprehensiveness
of the F1-score metric, it is considered the main detec-
tion accuracy reference. All the experimental accuracy
results are the average of five repeated measurements.
Meanwhile, all the experiments were implemented in
Python 3.8 and run on Linux CentOS 7.2.1511, using
an Nvidia Tesla P100 GPU

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score =
2P R

P + R
. (12)

C. Experiment Results and Analysis for the
WHU-Hi-LongKou Dataset

In this experiment, the Longkou dataset, which is a standard
dataset, was used to analyze the robustness of the different
P , PU, and HTD methods under different numbers of bands,
where the band subset size was set from 2 to 10 with an inter-
val of 2. Note that, for a fair comparison, the band subsets used
in the comparison methods were selected using the improved
sparse subspace clustering (ISSC) method [49] (which has a
suboptimal performance, as explained in Section V-B).

The quantitative results obtained under different numbers
of selected bands are shown in Fig. 9(a)–(d). The quantita-
tive results obtained using six selected bands are listed in
Table II (left), where the top-three results are highlighted
with different colors, and the class prior parameter of the
compared PUL methods is set as both the estimated value and
the true value (as explained in Section V-A). PU-KBS obtains
the best F1-score values and moderate AUC metric results,
while also obtaining high P and R values at the same time,
which indicates that PU-KBS shows good model robustness
under different band subset sizes. Moreover, inaccurate class
prior estimation leads to an overall decrease in the detection
accuracy, i.e., the values of P and R are more unbalanced,
and P is higher and R is lower, due to the low and inaccurate
class prior estimation (as shown in Fig. 5). Furthermore, the
moderate AUC values indicate the stability and relatively high
confidence of the PU-KBS detection model. The performance
of the P classifiers is usually lower than that of the PU
classifiers, due to the lack of negative samples as a reference.
In addition, the qualitative results obtained using six selected
bands are shown in Fig. 9(e)–(t). The detection region of
PU-KBS is more complete, while the distribution maps of the
traditional methods generally contain some noisy points, due
to the limited feature representation ability.

D. Experiment Results and Analysis for the PWD Detection
Dataset

In this experiment, the PWD dataset, which is an application
dataset, was applied to analyze the robustness of the different
P , PU, and HTD methods under different numbers of bands in
complex scenes, where the band subset size was set from 5 to
30 with an interval of 5. Similarly, for a fair comparison, the
band subsets used in the comparison methods were selected
using the ISSC method (which has a suboptimal performance,
as explained in Section V-B).

The quantitative results under different numbers of selected
bands are shown in Fig. 10(a)–(d), and the quantitative results
obtained using ten selected bands are listed in Table II
(medium). The top-three results are again highlighted with
different colors. The class prior parameter of the compared
PUL methods was set as both the estimated value and the
true value (as explained in Section V-A). PU-KBS obtains
the best F1-score and relatively high R and AUC values
under all band subset sizes. Significantly, the R-value is more
important than the P-value in disease area detection applica-
tions. This suggests that the PU-KBS framework could find
as many potentially diseased areas as possible for prewarning
monitoring, which would be influenced by inaccurate class
prior estimation. Moreover, an abnormal phenomenon of low
F1-score with a high AUC value can be found in some of the
HTD methods (MF, CEM, and ECEM), which could be related
to the error accumulation caused by the detection threshold
segmentation step. In addition, the qualitative results obtained
using ten selected bands are shown in Fig. 10(e)–(t). Within
the manually labeled ground truth, the red box area represents
the PWD area, while the yellow box represents the non PWD
area. Within the red box area, the misdetection rate of PU-KBS
is the lowest, as shown by the most complete PWD area.
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Fig. 9. Detection model comparison results for the WHU-HI-LongKou dataset. (a)–(d) Quantitative accuracy metrics. (g)–(t) Visual detection results obtained
using six selected bands, where (g)–(s) are obtained by the selection result of the ISSC method, and (m)–(s) are obtained using the true class prior as the
input parameter. (a) Precision. (b) Recall. (c) F1-Score. (d) AUC. (e) Original image. (f) Ground truth. (g) MF. (h) CEM. (i) ECEM. (j) DSC. (k) OCSVM.
(l) DSVDD. (m) BSVM. (n) PUL. (o) PBL. (p) deepPUL. (q) deepPBL. (r) uPU. (s) nnPU. (t) PU-KBS.

TABLE II
COMPARISON WITH DIFFERENT TARGET DETECTION METHODS, WHERE THE BAND SUBSET WAS SELECTED BY ISSC, AND THE CLASS PRIOR

OF THE PUL METHODS WAS SET AS BOTH THE ESTIMATED AND TRUE VALUES, WITH THE TOP-THREE RESULTS MARKED IN
RED, GREEN, AND BLUE, RESPECTIVELY

Meanwhile, for the misclassification within the yellow box
area, where the test negative samples are classified as positive,
the false alarm rate of PU-KBS is also the lowest.

E. Experiment Results and Analysis for the Indian Pines
Dataset

In this experiment, the Indian Pines dataset, which is a
standard dataset with limited samples, was applied to analyze
the robustness of the different P , PU, and HTD methods

under different numbers of bands in complex scenes, where
the band subset size was set from 5 to 30 with an interval
of 5. Meanwhile, for a fair comparison, the band subsets
used in the comparison methods were selected using the ISSC
method (which has a suboptimal performance, as explained in
Section V-B).

The quantitative results under different numbers of selected
bands are shown in Fig. 11(a)–(d), and the quantitative results
obtained using ten selected bands are listed in Table II (right).
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Fig. 10. Detection model comparison results for the PWD dataset. (a)–(d) Quantitative accuracy metrics. (g)–(t) Visual detection results obtained using ten
selected bands, where (g)–(s) are obtained by the selection result of the ISSC method, and (m)–(s) are obtained using the true class prior as the input parameter.
(a) Precision. (b) Recall. (c) F1-Score. (d) AUC. (e) Original image. (f) Ground truth. (g) MF. (h) CEM. (i) ECEM. (j) DSC. (k) OCSVM. (l) DSVDD.
(m) BSVM. (n) PUL. (o) PBL. (p) deepPUL. (q) deepPBL. (r) uPU. (s) nnPU. (t) PU-KBS.

Fig. 11. Detection model comparison results for the Indian Pines dataset. (a)–(d) Quantitative accuracy metrics. (g)–(t) Visual detection results obtained
using six selected bands, where (g)–(s) are obtained by the selection result of the ISSC method, and (m)–(s) are obtained using the true class prior as the
input parameter. (a) Precision. (b) Recall. (c) F1-Score. (d) AUC. (e) Original image. (f) Ground truth. (g) MF. (h) CEM. (i) ECEM. (j) DSC. (k) OCSVM.
(l) DSVDD. (m) BSVM. (n) PUL. (o) PBL. (p) deepPUL. (q) deepPBL. (r) uPU. (s) nnPU. (t) PU-KBS.

The top-three results are again highlighted with different col-
ors. The class prior parameter of the compared PUL methods
was set as both the estimated value and the true value (as
explained in Section V-A). PU-KBS obtains the best F1-score
and relatively high P and R values under different band subset

sizes. It can be found that the detection performance of uPU
has an apparent improvement compared with the other two
datasets, which is because the risk of the negative class has
been estimated to be negative in the other datasets, further
resulting in the network overfitting and has influenced the
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TABLE III
ESTIMATED CLASS PRIORS FOR THE THREE DATASETS

detection result seriously. While the estimated negative risk
basically remains positive due to the very small samples for
training in the Indian Pines dataset, the detection results of
uPU are relatively high and similar to that of the nnPU method.
In addition, the qualitative results obtained using ten selected
bands are shown in Fig. 11(e)–(t). PU-KBS has the most
complete detection result within the ground truth area, and
also the least misclassified result within the nontarget area.

V. ABLATION EXPERIMENTS AND DISCUSSION

A. Ablation Experiment for the Estimated Class Prior

This ablation experiment was conducted to compare the
estimated class prior value of PU-KBS under different band
subset sizes with the true value and the traditional estimated
class prior value. The WHU-HI-Longkou dataset and Indian
Pines dataset can provide the true target distribution for com-
parison, due to the complete annotation, while the proportion
of diseased pines in the PWD dataset is unknown, so the test
value was estimated by the intersection point of the accuracy
metric curves (as shown in Fig. 5).

The class prior estimation results are listed in Table III,
where the proposed method is compared with the traditional
estimation method of the kernel mixture proportion estimation
(KMPE) algorithm [50], whose KM2 value is commonly used
to determine the target class prior. As shown, the estimation
errors of PU-KBS under different band sizes are all within
the reasonable 0.05 range [41], while the KM2 value is not
accurate and shows a big difference.

B. Ablation Experiment for the Key Band Subset

To compare the KBS results of PU-KBS with those of
typical band selection methods, different kinds of band selec-
tion methods were used following the same deep PU network
(absPU), including: 1) ranking-based methods, i.e., maximum
variance principal component analysis (MVPCA) [51] and
spatial/spectral structural similarity (SSIM) [52]; 2) clustering-
based methods, i.e., k-means clustering (k-means) [53] and
fast neighborhood grouping for hyperspectral band selection
(FNGBS) [39]; and 3) sparsity-based methods, i.e., ISSC [49]
and sparse representation based band selection (SpaBS) [54].
Moreover, the πP parameters of the benchmark methods were
set as the true values. The main parameter settings are listed
in Table IV.

The detection results for the WHU-HI-Longkou dataset
under different numbers of selected bands are shown in
Fig. 12. The quantitative detection results of the PWD dataset

TABLE IV
PARAMETER SETTINGS OF THE COMPARISON METHODS

Fig. 12. Results of the comparison with different band selection methods
for the WHU-HI-LongKou dataset. (a) Precision. (b) Recall. (c) F1-Score.
(d) AUC.

and the Indian Pines dataset are shown in the Appendix as a
Supplementary Material. The result values for the WHU-HI-
Longkou dataset (using six selected bands), the PWD dataset
(using ten selected bands), and the Indian Pines dataset (using
ten selected bands) are listed in Table V (left), (medium),
and (right), where the top-three results are highlighted with
different colors. The proposed PU-KBS framework obtains
high and stable values of R, F1-score, and AUC, and it
exceeds the performance obtained using all bands when using
six selected bands. For the F1-score values, PU-KBS outper-
forms the other methods in all sizes of band subsets, which
demonstrates the stability and robustness of PU-KBS in KBS.
Meanwhile, ISSC shows the second-best performance, but
is slightly inferior to SSIM and FNGBS with 2–4 bands,
while stably maintaining the second-best performance with
6–10 bands. For the AUC values, PU-KBS again achieves
the best score, while ISSC shows a similar trend, maintaining
a top-three performance in most cases. Therefore, the band
selection results of ISSC were used for the detection model
comparison.

C. Ablation Experiment for Different EC Search Methods

To compare the search performance of different evolutionary
algorithms, the search strategy of the PU-KBS framework was
changed to other EC methods, besides the ABC algorithm,
as an ablation experiment. The other EC search methods
were genetic algorithm (GA) [55], differential evolution (DE)
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TABLE V
COMPARISON WITH DIFFERENT BAND SELECTION METHODS, WHERE THE DETECTOR WAS ABSPU, WITH THE TOP-THREE RESULTS

MARKED IN RED, GREEN, AND BLUE, RESPECTIVELY

Fig. 13. Results of the ablation experiment for different EC Search methods with the WHU-HI-LongKou dataset. (a)–(d) Quantitative accuracy metrics.
(f) Ground truth. (g)–(k) Visible detection results, where (h)–(k) were obtained using six selected bands. (a) Precision. (b) Recall. (c) F1-Score. (d) AUC.
(e) Original image. (f) Ground truth. (g) All bands. (h) PU-KBS-GA. (i) PU-KBS-DE. (j) PU-KBS-PSO. (k) PU-KBS-ABC.

TABLE VI
ABLATION RESULTS FOR DIFFERENT EC SEARCH METHODS, WITH

THE TOP-THREE RESULTS MARKED IN RED, GREEN, AND
BLUE, RESPECTIVELY

[56], and particle swarm optimization (PSO) [57]. The main
parameter settings are listed in Table IV.

The detection results for the WHU-HI-Longkou dataset
under different numbers of selected bands are shown in
Fig. 13(a)–(d). The distribution maps and the result values
obtained using six selected bands are shown in Fig. 13(e)–(k)
and Table VI, where the top-three results are highlighted
with different colors. The quantitative detection results of the
PWD dataset and the Indian Pines dataset are shown in the
Appendix as a Supplementary Material. The performance of
the ABC algorithm is superior in both search results and search
efficiency, and it can obtain the optimal detection results with

the least number of search times under the same population
and iteration settings. Furthermore, the performance of the
ABC algorithm has been reported to be comparable with these
EC search methods or even better in the current literature [42],
[58], [59]. In addition, the ABC algorithm also has fewer
control parameters and is efficient for the local and global
optimization of multimodal and multivariable problems, such
as high-dimensional hyperspectral data.

D. Discussion on the Selected Key Bands for the PWD
Detection Dataset

In order to investigate the diagnostic spectral characteristics
of pines with PWD, we compared the ten selected band results
of PU-KBS and the other band selection methods for the PWD
dataset (as described in Section V-B). This comparison can
also prove the application value of the KBS.

The ten selected band results of the benchmarking methods
and PU-KBS are visualized in Fig. 14(a)–(g) by line charts,
where they are compared with the original PWD spectral
curve [see Fig. 14(h)]. The corresponding quantitative spectral
angle (SA) values are shown in Fig. 14(i). As shown, the
ten selected band results of PU-KBS have the most similar
trend and accurate turning points, compared to the original
PWD spectral curve, which can also be verified by the lowest
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Fig. 14. Visualization and analysis of the ten selected band results for the PWD dataset. (a)–(g) Ten selected band results of the different band selection
methods. (a) MVPCA. (b) SSIM. (c) k-means. (d) FNGBS. (e) SpaBS. (f) ISSC. (g) PU-KBS. (i) Average SA. (j) Spectral curves of healthy and diseased
pines.

SA value. Although the band selection results of some of the
other methods also look similar to the original spectral curve,
their results have the characteristics of local accumulation
(SSIM, ISSC) or an overall uniform distribution (k-means,
FNGBS), and the turning point offset can affect the spectral
curve description.

The spectral curves of the healthy and moderately diseased
pines are shown in Fig. 14(j), where the located red points
are the ten selected band subsets of PU-KBS. The diagnostic
spectral characteristics for PWD detection can be obtained
by the 10-band result of PU-KBS. The wavelength range for
the study can be divided into the green (500–580 nm), red
(620–760 nm), and near-infrared (760–900 nm) regions. In the
green spectrum, the peak reflectance of diseased pines is lower
and moving to the longer wavelength, so as to distinguish
PWD by reflectance difference at 530 and 606 nm. As for
the red spectrum, the peak reflectance trend is the opposite
of the green spectrum, where the bands at 680 and 730 nm
can respectively describe the turning point and turning degree
of the PWD spectrum. For the infrared spectrum, the great
difference between reflectance, i.e., 810 and 863 nm, allows
easy separation of the diseased pines from the healthy pines.
It can be found that the PU-KBS-selected bands are similar
to the manual analysis results for PWD detection, which
demonstrates the correct guidance and application value of
the diagnostic spectral characteristics acquisition.

VI. CONCLUSION

In this paper, in order to solve the two main problems
when the PUL methods are applied to hyperspectral imageries
within complex scenarios—class prior estimation and redun-
dant information removal, a robust PU-KBS framework has
been proposed. The candidate class prior and key band subset
are encoded in the same vector for jointly initializing and
updating by the evolutionary algorithm through the optimiza-
tion function constructed by the detection result of the PU
network detector iteratively until the optimal detection results
are obtained. Five experiments based on a standard dataset
and ap-plication data that compared with the classical OCC
methods and HTD methods were designed and conducted,

which demonstrated that the end-to-end framework is superior
to the two-stage solution, the proposed PU-KBS framework
can acquire an accurately estimated class prior and key band
subset for the specific target of interest, as well as the robust
detector.

In the future, how to improve the proposed framework
from wrapper-based to embedded-based by closely linking the
detectors and evolutionary search should be considered, mean-
while, the current model complexity of the proposed PU-KBS
framework still has room to fall. Furthermore, the band selec-
tion consistency across image strips could be considered.
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