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The fusion of optical coherence tomography (OCT) and fundus modality information can provide a compre-
hensive diagnosis for retinal artery occlusion (RAO) disease, where OCT provides the cross-sectional examination
of the fundus image. Given multi-modal retinal images, an anomaly diagnosis model can discriminate RAO
without the need for real diseased samples. Despite this, previous studies have only focused on single-modal
diagnosis, because of: 1) the lack of paired modality samples; and 2) the significant imaging differences,
which make the fusion difficult with small-scale medical data. In this paper, we describe how we first built a
multi-modal RAO dataset including both OCT and fundus modalities, which supports both the anomaly detection
and localization tasks with pixel-level annotation. Motivated by the powerful generalization ability of the recent
visual foundation model known as the Segment Anything Model (SAM), we adapted it for our task considering
the small-scale property of retinal samples. Specifically, a modality-shared decoder with task-specific tokens is
introduced to make SAM support the multi-modal image setting, which includes a mask token for the anomaly
localization task at the pixel level and a fusion token for the anomaly detection task at the case level. Since SAM
has little medical knowledge and lacks the learning of the “normal” concept, it is infeasible to localize RAO
anomalies in the zero-shot manner. To integrate expert retinal knowledge while keeping the general segmen-
tation knowledge, general anomaly simulation for both modalities and a low-level prompt-tuning strategy are
introduced. The experiments conducted in this study show that the adapted model can surpass the state-of-the-art
model by a large margin. This study sets the first benchmark for the multi-modal anomaly detection and
localization tasks in the medical community. The code is available at https://github.com/Jingtao-Li
-CVer/MMRAD.

1. Introduction

Retinal disease is not only an indicator of a visual health problem,
but also has a correlation with hypertension and heart and brain diseases
[1]. Detecting the three most important causes of blindness (i.e., mac-
ular degeneration, glaucoma, and diabetic retinopathy (DR) [2]) at an
early stage can effectively avoid the loss of vision in many cases [3,4].
Especially with an aging population, the number of patients suffering
from chorioretinal diseases such as age-related macular degeneration
(AMD) can be expected to increase, and more precise retinal diagnosis is
required [5]. Furthermore, certain cardiovascular diseases (e.g., coro-
nary heart disease) [6] and brain diseases (e.g., Alzheimer’s disease) [7]
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can also be observed through an eye examination with a high diagnosis
accuracy.

Retinal fundus and optical coherence tomography (OCT) images are
the most important modalities, and their fusion has proven useful when
evaluating retinal pathology in supervised communities [8,9]. A fundus
image is captured with contrast filters (red, blue, and green filters) in a
noninvasive manner, providing a two-dimensional (2-D) representation
of the retinal surface. In contrast, OCT provides the three-dimensional
(3-D) structural information, showing the cross-sectional lesion of the
fundus image. Due to the different imaging mechanisms, the use of only
a single modality is insufficient to spot all the potential diseases. For
example, dry AMD at the early stage can only be observed in the OCT
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modality, while some typical DR alterations are more observable in the
fundus modality. To date, the multi-modal diagnosis works have mostly
concentrated on supervised learning. For example, Yoo et al. [8] com-
bined OCT and fundus images for improving the accuracy of AMD
diagnosis. To reduce the requirement for strict paired data, Wang et.al.
introduced the loose pair training and designed a two-stream multi--
modal CNN (MM-CNN) to classify three classes (normal, dryAMD and
wetAMD) [10]. Multi-Modal Multiple Instance Learning (MM-MIL)
improved the MM-CNN by designing instance learning module and
increased the model interpretation [11].

In contrast with the supervised methods, medical anomaly detection
and localization (MADL) can provide an initial diagnosis, and can thus
assist the related experts in an unsupervised manner [10]. A MADL
model is always trained with only healthy samples and gives each test
sample a continuous anomaly score [11]. Considering the high cost of
retinal samples, the MADL model is more practical than the supervised
models, without the need for expensive expert annotation [12,13].
Furthermore, the MADL model is not limited to preset disease cate-
gories, and is thus more flexible for unknown retinal diseases [14,15].

Despite all of this, the current MADL methods only focus on single-
modal retinal data because of the lack of paired modality samples, and
the significant imaging differences make the fusion difficult with small-
scale medical data. Researchers on MADL have considered many indi-
vidual modalities [16], including retinal fundus images [13], OCT im-
ages [17], chest X-ray images [18], computed tomography (CT) images
of the brain [19], and brain functional magnetic resonance imaging
(fMRI) [20]. To the best of our knowledge, no prior research has
attempted multi-modal MADL, although the effect of medical
multi-modal fusion has been validated in supervised communities
(where the used datasets are not publicly available) [8,21]. To this end,
we first established a cooperation with Renmin Hospital of Wuhan
University in China, and then built the first multi-modal dataset for
MADL research. Focusing on retinal artery occlusion (RAO) diagnosis,
we collected 370 paired samples, made up of fundus image and OCT
image modalities. RAO is a rare but visually threatening ophthalmic
emergency and associated with cardiovascular diseases closely. The
final constructed multi-modal retinal (MMR) dataset contains 266
paired images of healthy people and 104 paired images of patients with
RAO disease. Each patient image has been labeled at the pixel level (nine
symptom classes in the fundus image modality and eight symptom
classes in the OCT image modality). The constructed MMR dataset
supports both multi-modal anomaly detection at the case level and the
localization task at the pixel level.

To make the MADL model suitable for small-scale multi-modal data,
we chose to fine-tune the recent Segment Anything Model (SAM) [22],
considering its powerful zero-shot generalization ability [23]. Pre-
trained MADL models [24,16] have shown promising performances,
compared to models trained from scratch, such as the
reconstruction-based models [25,26]. As a visual foundation model,
SAM has been trained on the 1 billion SA-1B dataset and has a powerful
segmentation ability under the open-set setting [22]. However, since
SAM has little medical knowledge and lacks the learning of the “normal”
concept, it is infeasible to complete the retinal anomaly diagnosis task in
a zero-shot manner. To integrate expert retinal knowledge, we decided
to fine-tune SAM for the multi-modal MADL task.

There are two barriers when fine-tuning SAM for the MADL task.
Firstly, SAM does not support the multi-modal anomaly detection task,
and the fine-tuning process requires labeled samples. Labeled samples
are difficult to access and contradictory with the anomaly-free training
setting of the anomaly detection task [27]. To adapt SAM for supporting
both the anomaly detection and localization tasks, task-specific tokens
are introduced for the decoder, i.e., a mask token for the anomaly
localization task and a fusion token for the anomaly detection task. The
task-specific tokens are input into the modality-shared decoder with
image embeddings and trained to contain the task-specific information.
To fine-tune the model in a pseudo-supervised manner while keeping the
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SAM encoder frozen, we propose a general sample simulation strategy
for both the fundus and OCT anomalies, using only healthy images and
the data augmentation technique. The transformed data act as the
anomalies during the training stage and have shown a promising
generalization ability for real anomalies at the test stage. With the
simulated samples, a prompt-tuning paradigm is further introduced,
which keeps the heavy backbone weights frozen and generates the
learned low-level prompts for each encoder layer. The prompt-tuning
method reduces the training burden with limited samples, and the
low-level prompts are consistent with the semantically independent
property of the MADL task [28]. We name the adapted model the
multi-modal model for RAO anomaly diagnosis (MMRAD), which ac-
cepts the fundus image and OCT image as input, and outputs two
single-modal anomaly localization maps and the multi-modal anomaly
detection score for each case.

The main contributions of this paper can be summarized as follows.

1) We built the first multi-modal dataset for MADL research, which
focuses on RAO diagnosis, including both the fundus image modality
and OCT image modality. The dataset is labeled at the pixel level,
supporting both the multi-modal anomaly detection and localization
tasks.

2) Based on the recent visual foundation model, i.e., SAM, the multi-
modal model for RAO anomaly diagnosis (MMRAD) is proposed. A
general anomaly simulation strategy for both modalities and a low-
level prompt-tuning strategy are introduced to fine-tune the model
while keeping the SAM encoder frozen.

3) A modality-shared decoder with task-specific tokens is proposed,
which includes a mask token for the anomaly localization task and a
fusion token for the anomaly detection task. With these tokens,
MMRAD can output two single-modal anomaly localization maps
and the multi-modal anomaly detection score for each case.

The rest of this paper is organized as follows. Section 2 gives a brief
review of the related medical anomaly diagnosis work and the visual
foundation model. Section 3 introduces the constructed MMR dataset for
RAO diagnosis. Section 4 presents the proposed MMRAD model and the
fine-tuning strategies. The experimental results and analysis are given in
Section 5. Finally, the paper is concluded in Section 6.

2. Related work
2.1. Medical anomaly detection and localization for a single modality

Motivated by reducing the need for labeled data, the retinal anomaly
detection and localization tasks have been actively researched, which
are aimed at finding the anomaly patterns deviating from the healthy
patterns at the image level or pixel level [14]. The current related
methods can be roughly divided into autoencoder (AE)-based methods,
generative adversarial network (GAN)-based methods, and
pretraining-based methods. The AE-based methods assume that the
normal samples can be more easily reconstructed than anomalies, and
the reconstruction error indicates the anomaly score [16,25,29]. The
traditional AE-based methods apply convolutional AEs directly [29].
Some of the more recent AE-based methods focus on adding more
learning constraints [25] or using an advanced architecture (e.g.,
transformer model) [27] for better normal representations. Similarly,
the GAN-based methods assume that the normal samples can be more
easily regenerated, and the generation error is treated as the anomaly
score [10,17]. AnoGAN is a classical method which maps the test image
from image space back to latent space and assumes that the regenerated
image will only be constructed well for normal OCT images [10]. To
speed up the inference process, f-AnoGAN was proposed by training an
encoder to map the image to latent space automatically [17]. The
introduction of a discriminator can make the generated image more
realistic than only using the mean squared error (MSE) loss. Despite this,
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the assumption of both the AE and GAN methods is not met in general,
and the anomaly regions may be also reconstructed [27].

In contrast to learning the normal representations from scratch, the
pretraining-based methods use a pretext task to pre-train the model [24,
16] or use an ImageNet-pretrained model to extract the features [13]. A
significant improvement can be observed, compared to training from
scratch [24]. To recognize the subclasses of diseased images, the
multi-class strong augmentation via contrastive learning (MSACL)
method was further proposed, which extends the contrastive learning
into the four-class setting with pretext training [16]. However, these
pretraining-based methods need relatively large-scale medical images,
which is not feasible in our multi-modal case. Without the additional
pretraining stage, some methods use the ImageNet-pretrained weights
directly to extract the features and combine this with a one-class clas-
sifier [30]. For example, Ouardini et al. [13] concatenated the pre-
trained features and used them to train an isolation forest based anomaly
detection model. However, the ImageNet-pretrained features may not be
suitable for medical modalities [30,31], and the current medical
anomaly detection research only focuses on a single modality.

2.2. Visual foundation model

A visual foundation model refers to an emerging paradigm where the
model is trained on large-scale data and can be adapted to a wide range
of downstream tasks [32]. Inspired by the success in the natural lan-
guage processing (NLP) community, such as the bidirectional encoder
representations from transformers (BERT) model [33] and the genera-
tive pretraining (GPT) series of models [34], many visual foundation
models have been developed based on an advanced transformer archi-
tecture, which is compatible with the language and visual signals and
can learn the dependency relationship over a long range. Representative
models include contrastive language-image pretraining (CLIP) [35],
grounded language-image pretraining (GLIP) [36], Grounding DINO
[371, and SAM [22], where SAM is the only visual foundation model at
the pixel level, and the other models are mostly at the image level or
instance level. For example, CLIP is trained on large-scale network
image-text pairs, focusing on the image-level recognition task, without
explicit modeling of spatial relationships, and has a larger gap than SAM
with the dense anomaly localization task. Differing from the classical
ImageNet-pretrained model, SAM is powered by 11 million images and
has an excellent zero-shot generalization ability for unseen scenes [22,
38]. After fine-tuning the visual foundation model on the small-scale
downstream images, an obvious improvement can be observed across
a wide range of tasks [32,39]. Currently, although SAM has already been
successfully applied to certain supervised medical segmentation tasks
[401, no prior study has tried SAM in the medical anomaly detection or
localization tasks, due to the need for supervised fine-tuning.

3. Multi-modal retinal (MMR) dataset

Although the fusion of the fundus image modality and the OCT image
modality is beneficial for judging retinal disease, there are no open-
source multi-modal data (i.e., fundus image and OCT image) avail-
able, due to the high acquisition cost. To this end, we established a
cooperation with Renmin Hospital of Wuhan University in China, and
aimed to build a multi-modal dataset for anomaly detection and local-
ization research on RAO disease. The paired images were acquired by a
Zeiss VISUCAM 200 Fundus camera for the fundus images and spectral-
domain optical coherence tomography (SD-OCT) for the OCT images.
The fundus image size is 2124 x 2056, and the OCT image size is 868 x
1536 or 596 x 1264. The scan line information in the fundus image is
also included in each OCT image. All the OCT images were acquired with
single-line scanning in the macular area since the main symptoms of
RAO are in the macular area and single-line scanning is sufficient for the
anomaly diagnosis task. The final constructed dataset contains 266
paired images of healthy people and 104 paired images of patients with
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retinal disease. The healthy samples are considered as normal samples
and the patient samples as anomaly samples.

To support both the anomaly detection and localization tasks, the
patient samples have been further labeled at the pixel level with
LabelMe software by retinal specialists. A medical image was treated as
an anomaly at the case level for whatever symptom had been recognized
in either the OCT or fundus images. To ensure the label consistency, the
retinal specialists were trained in the software use and the set standard
operating procedure (SOP).

The training set includes 199 normal samples only, and the test set
includes 67 normal samples and 104 anomaly samples. Each sample is a
pair made up of a fundus image and an OCT image. To make the
anomaly symptoms clear, we gave each RAO symptom class a unique ID
(as detailed in Table 1) and labeled them separately. Retinal whitening
(17.74%) is the main symptom in the fundus anomalies. Middle limiting
membrane (0.65%) and atrophy of the retinal inner layers (0.22%) are
the most common OCT anomalies. All the symptom classes were treated
as RAO anomalies when evaluating the model in the study. We have
named the dataset the multi-modal retinal (MMR) dataset. The MMR
dataset is a challenging dataset because it supports both multi-modal
anomaly detection at the case level and the localization task at the
pixel level, and only the small-scale training samples can be used for
learning the normal fundus representations.

4. Methods

To diagnose disease with both color fundus images and OCT images,
we propose the unsupervised MMRAD model. Considering the limited
medical samples, MMRAD fine-tunes the SAM visual foundation model
for both the single-modal anomaly localization task at the pixel level and
the modal fusion anomaly detection task at the case level (as shown in
Fig. 1). To adapt SAM for the multi-modal setting, task-specific tokens
are introduced for anomaly localization and detection with the attention
decoder. Specifically, the fusion token interacts with both modality
embeddings successively to give a comprehensive anomaly score, while
the mask token processes each modality separately to output the
anomaly map. To reduce the training burden, unsupervised anomaly
sample simulation and low-level prompt-tuning strategies are proposed
to inject the medical knowledge into SAM while keeping the heavy
backbone frozen.

4.1. Modality-shared SAM encoder

Due to the high cost of obtaining multi-modal medical samples, the
training samples in the MMR dataset are small in scale, and it is

Table 1
The specific RAO symptom classes in the anomaly images of the MMR dataset.
Each symptom class is given an ID and the pixel percentage.

Modality Symptom class (class id, class name, pixel percentage)
1 Retinal whitening 2 Cherry-red spot — 3 Segmental
-17.74% 0.13% changes of retina
vessel — 0.96%
Fundus 4 Retinal 5 Cotton-wool spots — 6 Retinal
image hemorrhage — 1.80% embolus - 0.02%
modality  0.67%
7 Retinal 8 Neovascularization — 9 Retinal hard
arteriovenous cross 0.35% exudates — 0.01%
- 0.52%
1 Prominent middle 2 Atrophy of retinal 3 Subretinal fluid
limiting membrane inner layers — 0.22% - 0.04%
- 0.65%
. 4 Outer retinal and choroidal hyperreflectivity in the macular — 0.23%
OCT image . X N
: 5 Outer retinal and choroidal hyperreflectivity in the parafoveal —
modality

0.31%
6 Middle retinal hyperreflectivity — 0.05% 7 Intraretinal
fluid — 0.02%

8 Posterior vitreous detachment/epiretinal membrane — 0.26%
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Fig. 1. The framework of the proposed multi-modal model for RAO anomaly diagnosis (MMRAD). The task-specific tokens are designed to adapt SAM for supporting
both the single-modal anomaly localization task at the pixel level and the modal fusion anomaly detection task at the case level with the modality-shared decoder.
MMRAD fine-tunes SAM with simulated samples and low-level prompt tuning, keeping the encoder frozen to reduce the training burden.

infeasible to train an anomaly detection model from scratch. Inspired by
the success of the large visual foundation models, which are trained on
large-scale data and can be transferred to downstream tasks with zero or
few shots, we chose to fine-tune the recent visual foundation model
known as SAM [22] for the anomaly localization and detection tasks.

Before diving into the MMRAD model, it is necessary to first intro-
duce the SAM encoder, which transforms the input image from RGB
space into the embedding space, and plays the key role for the zero-shot
segmentation ability. The encoder of SAM is based on the vision trans-
former (ViT) model [41] with cascaded transformer blocks. Similar to
the NLP models [33,34], the SAM encoder processes the features in a
patch as a unit, where each patch of the original image is first trans-
formed into an embedding vector. The transformer block refines the
embedding space with cross attention to exchange the mutual infor-
mation between each pair of embedding vectors. Benefiting from the
long-distance modeling of transformer blocks [42] and the large-scale
datasets, the pretrained SAM encoder can extract high-quality embed-
dings for a variety of domains.

4.2. Attention decoder with task-specific tokens

The decoder of the MMRAD model is intended to support both the
anomaly localization and detection tasks, given multi-modal embed-
dings from the SAM encoder. To achieve this, learnable task-specific
tokens are introduced for the attention decoder, i.e., the mask token

for the anomaly localization task and the fusion token for the anomaly
detection task. The task-specific tokens and the image embeddings from
the encoder constitute the query, key, and value elements in the atten-
tion mechanism [43], which injects the anomaly information into the
mask token and fusion token by attention computing. The attention
processing architecture in the decoder (Fig. 2) is motivated by the
original SAM decoder, which alternately uses self-attention and
cross-attention modules to refine the varying input query. Compared to
the other decoder designs, the architecture depicted in Fig. 2 has the
advantage of being compatible with the two different task-specific to-
kens and can use the pretraining parameters of the original SAM
decoder. Since the anomaly localization and detection tasks diagnose
the same patient in different levels, the decoder is made weight-shared
between the two task pipelines for consistent results and to reduce the
training burden. With the shared attention decoder, the mask token
deals with the two modalities in a parallel manner, and the fusion token
works in a serial manner for an overall examination, as shown in Fig. 1.

4.2.1. Anomaly localization with the mask token

The mask token is expected to be aware of the anomaly localization
information in each modality image and is used to segment the anomaly
pixels. The initial mask token is set as a learnable vector with the same
feature dimension as the image embeddings. The anomaly information is
gradually injected into the mask token by interacting the image
embedding and the mask token with the attention decoder. By treating
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Fig. 2. The detailed architecture of the modality-shared decoder, consisting of the self-attention and cross-attention modules to exchange the information of the task
specific tokens (e.g., Tr,) and the image embeddings (e.g., T.). The decoder is shared with the same weights for the RAO anomaly localization and detection pipelines.
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some of the input (embeddings or the mask token) as the query value,
the attention mechanism can refine this by modeling the relationship of
all the query and key values. During the training stage, the mask token is
optimized to have high correlation with the embeddings corresponding
to the anomaly regions.

The mask token interacts with the two modality embeddings in a
parallel manner since the anomaly localization is conducted at the pixel
level in each modality. The localization process is the same for both the
fundus and OCT images with the shared attention decoder to reduce the
training burden. For simplicity, we take the fundus embeddings T, €
RI*C as an example to show the anomaly localization process in Fig. 1. L
is the embedding number and C is the dimension of the embedding
vector. Given the mask tokens T, € R® and T, the modality-shared
decoder updates their representation with several cascaded self-
attention and cross-attention modules. Eqgs. (1)—(3) show the inner
process of the decoder. T, is first updated with the self-attention
computation to obtain the refined T, where W,,, Wy,, and W,, are
the linear weights used for projecting T;, into the query, key, and value
features, as in Eq. (1). The two cross-attention modules are then
executed alternately, where the first module updates T2, with T, as in
Eq. (2), and the second one updates T, with Tfn, as in Eq. (3).

T

13 somax( "2 ) (1)
1 T

12 s R ) ) ®
2 T

1~ s UL ®

The modality-shared decoder builds a connection between the mask
token and the image token and injects the anomaly localization infor-
mation into T},. The final obtained T? and T2 are multiplied directly and
activated with the sigmoid function to output the anomaly map M., as in
Eq. (4).

M, = Sigmoid(TAT?) (4

Differing from most of the traditional anomaly localization methods,
MMRAD outputs the normalized anomaly scores directly, without
relying on any distance measurement. This end-to-end localization has
been named the “one-step paradigm” in the remote sensing community
[44], and MMRAD is the first method to implement this in the medical
community. Without adopting any proxy task (e.g., reconstruction or
generation) [10,17], the proposed model can be optimized directly with
a variety of classification losses.

4.2.2. Anomaly detection with the fusion token

Differing from the anomaly localization task, which is a dense pre-
diction task, where the mask token processes the two modalities in a
parallel manner, the anomaly detection task only outputs a compre-
hensive score by processing the two modalities in series. The bottom part
of Fig. 1 shows the serial workflow. The processed fusion token is ex-
pected to be aware of whether there is an anomaly in the given multi-
modal embeddings. Compared to the mask token, the fusion token
does not need to locate the anomalies but needs to consider both the
fundus and OCT modalities together. This process is similar to the work
of a medical professional, who will always look at multi-modal data to
give a comprehensive diagnosis. To fuse the anomaly information in
both modalities, the fusion token interacts with both modality embed-
dings successively by the use of the attention modules in the decoder.
When conducting the cross-attention computation, the fusion token is
treated as the query, and the two modality embeddings act as the key
and value in turn, where the fusion token is updated gradually to achieve
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a comprehensive diagnosis.

The interaction order for the fundus and OCT modalities is flexible,
and Fig. 1 shows the detailed workflow when processing T, first. The
influence of the interaction order is studied in Section 5.4.7. The inter-
action process for the fusion token with image embeddings in the
attention decoder is identical to that for the mask token in the locali-
zation pipeline. Differently, the attention decoder is used twice to fuse
the multi-modal information, and the final T}‘ after four updates is ex-

pected to contain the comprehensive diagnostic information. To obtain
the final anomaly detection score S, a multilayer perceptron (MLP) is
applied to Tji‘ with the sigmoid function, as in Eq. (5).

§ = sigmoid(MLP(T})) )

4.3. Fine-tuning strategies

To make full use of the pretrained SAM encoder weights, MMRAD is
fine-tuned with simulated samples and generates low-level prompts
while keeping the SAM encoder frozen. Since labeled retinal samples are
difficult to access, we propose a general sample simulation strategy to
fine-tune MMRAD in a pseudo-supervised manner with only healthy
images. With the simulated samples, we follow the prompt-tuning
paradigm for efficient fine-tuning and emphasize generating low-level
prompts that are suitable for the MADL task.

4.3.1. Medical anomaly sample simulation

Real medical anomalies are difficult to acquire, and the label cost is
expensive, so we chose to simulate the medical anomaly samples for
end-to-end fine-tuning. From the perspective of the data distribution,
the anomalies are the out-of-distribution samples, given a normal dis-
tribution [45]. The anomaly diagnosis model does not discriminate the
special categories of the out-of-distribution samples but only discrimi-
nates whether the given sample is of the healthy distribution. Inspired
by this observation, we simulate the anomalies by shifting the distri-
bution of the normal samples violently with data augmentation tech-
niques. With different kinds of augmentation combinations, various
out-of-distribution samples can be generated.

Fig. 3 shows the overall simulation workflow. The workflow is uni-
versal for both the fundus and OCT modalities, and we take a fundus
image X, as an example. Given a healthy image X, the workflow chooses
the anomaly generation area (i.e., the = operation) first and then
transforms its distribution with the data augmentation techniques (i.e.,
the ¢ operation) to create the out-of-distribution anomalies. We found
that a single kind of augmentation technique performs worse than the
combined use of various augmentation techniques, which provide more
diverse anomalies and benefit the diagnosis results on real anomalies (as
discussed in Section 5.4.1). Since a real anomaly area may have irregular
shapes, the workflow finally applies affine transformation to twist the
anomaly area. It is worth noting that the proposed workflow has great
randomness in the selection of anomaly location, data augmentation of
the anomaly generation, and affine transform, which can make the
generated samples diverse and prevent the model learning specific kinds
of anomalies.

4.3.2. Low-level prompt tuning

The simulated paired samples make it possible to fine-tune SAM in a
supervised manner. However, there is still one remaining problem, i.e.,
which fine-tuning paradigm to choose. The popular paradigm is partial
tuning (such as the decoder), which is always inferior to full tuning with
the high storage cost. Recently, the prompt-tuning paradigm has
demonstrated a strong generalization ability in high-level recognition
tasks [39,46]. Unfortunately, the MADL task is a low-level task, and a
gap exists when directly using recognition-specific prompts.

To deal with this problem, we developed low-level prompt tuning
(LPT) to complete the fine-tuning stage. According to Fig. 1, the LPT
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Fig. 3. The workflow of the proposed anomaly sample simulation strategy, which is general for both the OCT and fundus images.

freezes the heavy backbone weight (i.e., the SAM encoder) and changes
the embedding space for each encoder transformer layer with the
generated prompts. The prompts are learnable embeddings [47], which
are trained to contain medical-specific knowledge to assist the original
SAM encoder. To make the prompts aware of the low-level features, we
use both the shallow features from the large-scale pretrained convolu-
tional blocks (i.e., features F, € R**64*h) and the pretrained patch
embeddings (i.e., features F, € R®**¢**") from the original SAM encoder
to generate the prompts, where h represents the channel dimension of
the obtained feature cubes. The pretrained features from the two
different architecture families (i.e., CNN and transformer) are expected
to complement each other [42,48]. As in Fig. 4(a), F, is extracted mainly
by the m individual pretrained convolutional blocks C; — Cp. The
process can be formally expressed as shown in Eq. (6), where [] repre-
sents the concatenation operation.

F. = IN([Gy (X), .., Gu(X)]) ©)

Both F, and F, have smaller feature dimensions than the encoder
embedding space, to reduce the learning burden with limited medical
samples. F, and F, are fused by element-wise addition, and act as the
base to generate the n prompts for the n transformer encoder layers (as in
Fig. 4(b)). Since the embedding space varies for each layer, N unshared
linear layers LN; — LN, are set to customize the common low-level
features for each encoder layer, and one shared layer LN; increases the
dimension of LN; — LN, to be the same as the layer input. In total, each
prompt Pr; for the i-th transformer layer can be represented as shown in
Eq. (7).

Pr; = LN, (LN;(F. +F,)) @

Concat Learnable Patch
embedding

Low-level features F,

Pretrained Patch
embeddin

Low-level features F,

Image X

Conv blocks C; — Gy,

(a)

4.4. Multi-modal training and testing

With the redesigned decoder and the fine-tuning strategies, the
MMRAD model can process both the fundus and the OCT modalities
simultaneously, without the need for real anomalies. At the training
stage, if both modality images are available, as in Fig. 5(a), MMRAD is
optimized jointly for the anomaly localization task at the pixel level and
the anomaly detection task at the case level. The anomaly localization
loss Ly is composed of cross-entropy (CE) loss on both modalities, as in
Eq. (8), where B, and B, are the simulated binary labels corresponding
to the output anomaly maps M, and Mocr, respectively.

Lul = CE(Mch) + CE(MocuBoct) (8)

Since the anomaly detection result for a pair of fundus and OCT
images is considered an anomaly once any modality shows disease, the
anomaly detection loss is computed as shown in Eq. (9), with max(B,
B,) as the ground truth. The max(B,, B,) value is a scalar value of O or
1. Ly and L,4 work together (as in Eq. (10)) to optimize MMRAD for both
the anomaly localization and anomaly detection tasks, given both
modalities.

Log = CE(S,max(Bc,Bo)) ©

L= Ly+Lag (10)

If only single-modal images are available at the training stage, as in
Fig. 5(b), the model only outputs the anomaly localization map and is
optimized only with CE(M,, B.) for the fundus modality (or CE(Moct, Boct)
for the OCT modality). Since there is no fusion requirement to output the
anomaly detection results, we found that the traditional manner of
taking the maximum or mean value as the image-level detection results

t
Transformer Layer »
AN
Tune n H Up Tune }—'{ Prompt n }—'@
LN, Pr,
Shared | LNs Transformer Layer 1
v
Tune 1 H Up Tune l—'{ Prompt 1 }—‘G:D
LN, Pry

(b)

Fig. 4. (a) Low-level extraction component. (b) Prompt generation component. (a) and (b) belong to the low-level prompt tuning, which generates prompts in the

transformer input space to fine-tune MMRAD.
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Fig. 5. The training process for the proposed model with both modalities (a) and a single modality (b). When both modalities are available, the model is optimized
jointly for the anomaly localization task at the pixel level and the anomaly detection task at the case level. When only a single modality is available, the model
outputs and optimizes the anomaly localization task only. At the test stage, the trained model from (a) can also process a single modality to output the anomaly

localization map, as shown in (b).

is enough for the single-modal input. CE loss is chosen in Egs. (8)-(10)
since it is the classical baseline of many advanced classification or seg-
mentation loss functions. Certain advanced loss functions could improve
the performance further, but that was not the focus in this study (as
discussed in Section 5.4.5).

At the test stage, the model trained with multi-modal images from
Fig. 5(a) can infer both a multi-modal image pair and a single-modal
image. Given a pair of fundus and OCT images, the model can output
two anomaly localization maps and one anomaly detection score
simultaneously. Given a single-modal image, the model outputs the
anomaly localization map only. In contrast, the model trained with
single-modal images from Fig. 5(b) can only process the same modality
images and generate the anomaly localization map, which is exactly
how we used the MMRAD model on the Indian Diabetic Retinopathy
Image Dataset (IDRiD) dataset with the fundus modality only.

5. Results
5.1. Experimental settings

5.1.1. Datasets

Due to the sparsity of retinal images with pixel-level annotation, two
accessible datasets were used to evaluate the proposed MMRAD model.
The MMR dataset built in this study contains multi-modal OCT and
fundus images, which supports both the anomaly detection task at the
case level and the anomaly localization task at the pixel level for RAO
diagnosis. Detailed information about the MMR dataset is provided in
Section 2. The IDRID dataset is publicly available [49], but supports only
the fundus anomaly localization task. IDRiD focuses on DR detection,
and the lesions include microaneurysms, hemorrhages, hard exudates,
and soft exudates. To train the anomaly localization model, we chose the
healthy images of the IDRiD dataset as the training set (168 images) and
the lesion images as the test set (81 images).

5.1.2. Comparison methods and evaluation metrics

The proposed MMRAD model was compared with two classical
medical anomaly diagnosis methods and four state-of-the-art methods.
The former methods were f-AnoGAN [17] and the convolutional
autoencoder (CAE) [29]. The latter methods were a transfer learning
(TL)-based model [13], PatchCore [50], the patch distribution modeling
method (PaDiM) [51], and UniAD [52]. The comparison models were
trained separately on each modality to output the anomaly location
map, where the maximum value of both modalities was taken to act as
the anomaly detection score at the case level.

We take the area under the receiver operating characteristic (ROC)

curve (AUC) as the main quantitative metric for both tasks, which
considers the trade-off between the true positive rate (TPR) and the false
positive rate (FPR) at different thresholds. The varying thresholds
determine whether a pixel is an anomaly for the anomaly localization
task and whether an image contains the anomaly for the anomaly
detection task. However, AUC is always biased toward the large
anomalies and has limitations in evaluating small anomalies for the
anomaly localization task [53]. To address this problem, we also
introduce the per-region overlap (PRO) metric to evaluate the locali-
zation task, following [53,54], which treats the anomaly regions of
different size equally.

5.1.3. Implementation details

The f-AnoGAN model used the ResNet-based Wasserstein GAN
(WGAN) with gradient penalty (WGAN-GP) [55] for stable GAN
training. To balance the rich spatial detail of medical images and the
intractable GAN training, the generated image size was set to 256 x 256
and the latent space dimension was set to 128, following Thomas et al.
[17]. We implemented CAE with ResNet-50 as the backbone and the
same DeConvNet architecture as Rashmi et al. [29]. To strengthen the
detection ability of the TL-based method, we wused the
ImageNet-pretrained EfficientNet v2 [56] to extract the features and
implemented the isolation forest algorithm using the Scikit-learn library
[57]. The memory bank in PatchCore was constructed from the pre-
trained ResNet-50 model, and the sampling ratio of PatchCore set was
set to 0.1. PaDiM selected the same pretrained features as PatchCore,
and the randomly selected dimension was set to 100. All the settings of
UniAD followed the original paper [52].

The proposed MMRAD model was built based on SAM with the
adapted ViT-B encoder. The 7 operation was executed with a probability
of 0.7, which means that pure healthy samples could also be generated.
For the LPT, we used the first three layers of two ImageNet-pretrained
ResNet-50 models with different parameters to extract the low-level
features. The mask token T, and fusion token Ty had the same token
length of 256. In practice, T;, and Ty were concatenated together for
efficient inference. The attention decoder and the mask token are
weight-sharing modules for both modalities. T interacts with the fundus
modality first for the anomaly detection at the case level (as discussed in
Section 5.4.7). The augmentation techniques used for the anomaly
simulation are a composition of pixel-level and spatial-level trans-
formations (as discussed in Section 5.4.1). MMRAD was optimized using
the AdamW optimizer [58] (learning rate = 0.0002,3; = 0.9. g, =
0.999) and the pretrained SAM parameter was fine-tuned for 1 epoch.
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5.2. Results obtained on the MMR dataset

5.2.1. Anomaly localization results obtained on the single-modal images

The results obtained on the constructed MMR dataset are made up of
the single-modal anomaly localization results and the modal fusion
anomaly detection results. Fig. 6 shows the qualitative anomaly locali-
zation results for the fundus images, where we masked the black back-
ground for better visualization. The f~-AnoGAN and CAE models have the
highest anomaly degree on the optic disc area, and the real RAO
anomaly area has a lower response. This is because the used recon-
struction error in image space is sensitive to extreme values. In contrast,
the remaining methods compute the anomaly score in feature space and
show a higher response in the anomaly area. The PaDiM and PatchCore
models are the only methods that locate the anomaly vessels in the first
example, but fail for the remaining anomaly areas. The proposed
MMRAD model found most of the anomaly areas, with fewer false
alarms than the comparison methods. Table 2 lists the corresponding
quantitative results. Except for the proposed MMRAD, PaDiM and
PatchCore both obtain PRO values that are higher than 0.40. Under the
AUC metric, MMRAD achieves the highest score of 0.6997 and is around
3 points ahead of the second-place PaDiM model.

Fig. 7 shows the qualitative anomaly localization results for the OCT
images. Without expert knowledge, readers could identify the RAO
anomalies in the samples of Fig. 6, but they would struggle to process the
sample OCT images in Fig. 7. Identifying the anomalies in the OCT
modality is more difficult than in the fundus images. Almost all the
comparison models fail to localize the anomaly region in Fig. 7. The f-
AnoGAN model tends to recognize the brightest region as an anomaly
region due to the almost fully black background. Although MMRAD
shows a green color rather than the ideal blue color in the imaging re-
gion, the real anomaly regions are identified with the highest anomaly
response. Table 2 lists the corresponding quantitative results. The AUC
values of the f-AnoGAN and CAE models are around 0.5, showing the
great challenge for the OCT modality. MMRAD obtains the best per-
formance under both the AUC and PRO metrics, surpassing the second-
place PaDiM model by around 3 points in AUC score and around 10
points in the PRO metric.

5.2.2. Anomaly detection results obtained on the multi-modal images
Table 2 also lists the multi-modal anomaly detection results. The
multi-modal anomaly score of the comparison models was obtained by
using some of the statistical values of the single-modal anomaly maps,
following Zavrtanik et al. [59]. Compared to the anomaly localization
task at the pixel level, the anomaly detection task at the case level only
needs to diagnose whether there is an RAO anomaly in the images,
without localizing it. The relatively simpler demand brings a higher

f~AnoGAN CAE

Image

TL-based
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detection AUC score when compared to the localization scores. Most
models obtain an AUC score of higher than 0.70. MMRAD surpasses the
comparison models by a large margin and achieves the highest AUC
score of 0.7664, which shows the superiority of the designed fusion
token, compared to the use of the statistical values.

5.3. Results for the IDRiD dataset

The IDRiD dataset is a valuable open-source retinal dataset with
pixel-level annotation, for which we report the anomaly localization
results in Fig. 8 and Table 3. The IDRiD dataset was annotated in a semi-
automatic mode and has many sporadic diseased regions. Similar to the
results for the MMR dataset, the f~-AnoGAN and CAE models can
recognize some of the anomaly areas with a low response. The
remaining comparison models can locate the anomaly region more
accurately, but their resolutions are low since their detection process is
conducted in feature space. Many tiny diseased areas are ignored in the
anomaly maps of PatchCore, PaDiM, and UniAD. Since the black back-
ground in the IDRiD dataset is not all zero pixels, the TL-based method
also has a high response to the background in the third example, caused
by some tiny value changes. MMRAD finds most of the large and small
diseased areas, and surpasses the second-place model by around 2 points
in AUC score and 4 points in the PRO metric.

5.4. Model analysis

5.4.1. Anomaly transformation

The anomaly transformation generates the pseudo-anomaly regions
in the proposed simulation strategy, and the simulation quality has a
great effect on the diagnosis results. Table 4 lists the related results when
changing the transformation settings. The tested settings included both
the pixel-level transformations and the spatial-level transformations. All
the transformations were implemented using the Albumentations library
[60]. Color jitter, channel shuffle, and RGBShift transformation change
the pixel value while keeping the spatial location unchanged. Among
these transformations, RGBShift achieves the best overall performance
with the localization AUC in the fundus image modality (0.6839) and
the AUC in the OCT image modality (0.8594). The channel shuffle
transformation results in an obvious accuracy drop for the anomaly
localization task in the OCT modality. We speculate that this may have
been caused by the gray style of the OCT image, and shuffling the
channels may not change the distribution distinctly. Compared to the
pixel-level transformation, the spatial-level transformation (i.e., rota-
tion) results in a higher localization AUC in the fundus image modality
(0.7037), but with an obvious drop in the multi-modal anomaly detec-

tion task. By combining the transformations, MMRAD obtains the best
UniAD MMRAD

PatchCore PaDiM

0.5

Fig. 6. The qualitative detection results for the RAO anomaly localization task on the fundus image modality.
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The quantitative comparison results for the anomaly localization and detection tasks on the constructed MMR dataset.

Method Anomaly localization (fundus modality) Anomaly localization (OCT modality) Anomaly detection (with both modalities)
AUC PRO AUC PRO AUC

f-AnoGAN 0.5958 0.2577 0.5360 0.3052 0.7232
CAE 0.5751 0.2197 0.4225 0.2710 0.6447
TL-based 0.5303 0.1714 0.6496 0.2510 0.5979
PatchCore 0.6531 0.4446 0.7809 0.4311 0.7062
PaDiM 0.6720 0.4639 0.8042 0.4417 0.7196
UniAD 0.6676 0.3551 0.7809 0.3526 0.7014
MMRAD 0.6997 0.4303 0.8295 0.5339 0.7664

f~AnoGAN

TL-based

PatchCore PaDiM UniAD

Fig. 7. The qualitative detection results for the RAO anomaly localization task on the OCT image modality (MMR dataset).

TL-based

PatchCore UniAD

Fig. 8. The qualitative detection results for the anomaly localization task on the fundus images (IDRiD dataset).

Table 3
The quantitative comparison results for the anomaly localization task on the
IDRiD dataset.

Table 4
Ablation comparison results for the chosen anomaly transform on the MMR
dataset.

Method Anomaly localization
AUC PRO

f-AnoGAN 0.6649 0.2794
CAE 0.4809 0.1049
TL-based 0.4680 0.1716
PatchCore 0.8126 0.3036
PaDiM 0.7892 0.3147
UniAD 0.7641 0.2394
MMRAD 0.8375 0.3544

Anomaly Anomaly Anomaly Multi-modal
transformation localization in localization in anomaly
setting fundus OCT detection
AUC PRO AUC PRO AUC
Color jitter 0.6456  0.3412 0.8241 0.4999 0.6815
Channel shuffle 0.6736  0.3688 0.6314  0.4364 0.6518
RGBShift 0.6839 0.4251 0.8594 0.5607 0.6708
Rotate 0.7037  0.4504  0.8262  0.5232 0.5679
Composition 0.6997  0.4303  0.8295  0.5339 0.7664

overall performance (ranking first or second place), and especially the
highest detection AUC score of 0.7664. The combination of trans-
formations can increase the anomaly diversity and generate anomalies
that are suitable for both modalities.

5.4.2. Multi-modal vs single-modal images

OCT and fundus images are the two most important modalities for
retinal diagnosis, where the complementary information has been
proven useful in many previous works [8,9]. To validate the superiority

of multi-modal images over single-modal images in our task, we report
the anomaly detection results of the different models for single-modal
images in Table 5. Most models achieve a better RAO detection perfor-
mance with both modalities, compared to a single fundus or OCT mo-
dality, with a stable promotion. The f-AnoGAN, CAE, and MMRAD
models obtain an increment of around 3 points over the single-modal
results. There are exceptions for PatchCore and UniAD, where the sin-
gle modality performs better than the modality fusion. Note that both
PatchCore and UniAD achieve extremely imbalanced detection
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Table 5
The RAO anomaly detection results with a single modality and both modalities
on the MMR dataset.

Method Fundus modality OCT modality With both modalities
AUC AUC AUC

f-AnoGAN 0.6985 0.6288 0.7232
CAE 0.5530 0.6058 0.6447
TL-based 0.5746 0.5919 0.5979
PatchCore 0.7399 0.6287 0.7062
PaDiM 0.6756 0.7065 0.7196
UniAD 0.7271 0.6524 0.7014
MMRAD 0.7350 0.7121 0.7664

performances on the two modalities, which may increase the fusion
barrier and thus decrease the performance.

For the anomaly localization task, the promotion of multi-modal
training can also be observed in Table 6. Since the comparison models
were trained for each modality to output the anomaly localization map
in turn rather than together, the comparison experiment was conducted
with the proposed MMRAD. MMRAD uses both modalities in a parallel
manner with the modality-shared decoder, where the multi-modal
training improves the decoder with more images, and a better decoder
can benefit both modalities. Tables 5 and 6 show that the combined use
of fundus and OCT modalities can benefit both the anomaly localization
and detection tasks.

5.4.3. Analysis of the prompt-tuning method

The LPT method is designed to tune the heavy SAM encoder by
injecting the learnable low-level prompts into each encoder layer, which
consists of the low-level feature extraction module and the prompt
generation module. Since the existing prompt-tuning methods cannot be
strictly divided into these two modules, the related analyses were con-
ducted by varying the design choices. For the analysis of the low-level
feature extraction module, we compared the extraction strategies of
CNN blocks without pretraining, Fourier transform, as in [39], and the
pretrained CNN used in the proposed method. The results are reported in
Table 7. Since there is no low-level prior in CNN blocks without pre-
training, this approach performs around 3-6 points lower than the other
two strategies. Benefiting from the large-scale pretraining dataset and
the advantages of the data-driven approach, the pretrained CNN blocks
can extract better low-level features than the hand-crafted Fourier
transform approach, especially under the PRO metric for both the
fundus and OCT modalities.

The main unique design of the prompt generation module lies in the
LN; with shared weights and LN; — LN, without shared weights for each
transform layer, so we varied this design to validate its effectiveness. In
the four different settings listed in Table 7, sharing all the layer weights
results in the worst performance, which can be understood since the
generated prompts would be the same for all the layers with different
levels of features. If the setting goes to the other extreme, without any
shared weights, the performance is better but there is still a great gap
with the partly shared setting. The large number of trained parameters
makes the fine-tuning process with limited medical samples difficult.
Comparing the partly shared setting of sharing LN; — LN, or LN;, we
found that there is only a stable promotion when sharing LN; — LN,,, and
thus we chose this setting for the prompt generation module.

We also compared the proposed LPT method with the famous visual

Table 6
The anomaly localization results of the proposed model trained with a single
modality and both modalities on the MMR dataset.

Metric Single-modal training Multi-modal training
Fundus modality =~ OCT modality =~ Fundus modality =~ OCT modality
AUC 0.6873 0.8095 0.6997 0.8295
PRO 0.4384 0.5156 0.4303 0.5339
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prompt tuning (VPT) [47] and AdaptFormer [61] methods, the recent
explicit visual prompting (EVP) method [39] for structural segmenta-
tion, and also the baseline with trained decoder only. The results are
reported in Table 8. Unsurprisingly, all the prompt-tuning methods
surpass the decoder-only baseline by injecting the downstream knowl-
edge into the backbone layers. VPT and AdaptFormer are designed as
general tuning methods without special consideration for the low-level
tasks such as anomaly diagnosis, and perform worse than EVP and the
proposed LPT. Compared to EVP, the proposed method extracts the
low-level features from the shallow layers in large-scale pretrained CNN
blocks, and has a better overall performance.

5.4.4. Modality-shared mask token and decoder

Considering the limited medical samples, we made the mask token
and the decoder shared by both modalities to reduce the training
burden. To validate the effectiveness of this approach, we compared the
performances of different weight-sharing choices and report the results
in Table 9. Setting either the mask token and the decoder weight un-
shared leads to an obvious performance drop in both the localization and
detection tasks. Compared to the choice of shared decoder only, the
choice of shared mask token only uses two separate decoders for the
fundus and OCT modalities, where the attention mechanisms increase
the number of learned parameters, and this choice leads to a worse
performance. Overall, the decrease of learned parameters benefits the
RAO anomaly diagnosis performance with limited medical samples.

5.4.5. Comparison of different training losses

The choice of different training losses has an obvious effect on the
RAO anomaly diagnosis results. To make the effect clear, we compared
the CE loss with the advanced focal loss [62], dice loss [63], and Lovasz
loss [64] on the MMR dataset, as shown in Table 10. Both the dice loss
and focal loss train the model effectively, but the focal loss surpasses the
CE loss in many metrics by a large margin. The results show that the
performance of the proposed MMRAD method can be enhanced further
with a more advanced loss function. Despite this, the CE loss was chosen
to train the proposed model for the comparison in Table 2 and Table 3,
since it is the classical baseline of many advanced classification or seg-
mentation losses, and the main diagnosis promotion is expected to come
from the SAM pretraining, new multi-modal decoder, and the
fine-tuning strategies, and not an advanced loss function.

5.4.6. Model generalization

The model generalization ability is of great significance for practical
diagnosis. To validate this, since there are no publicly available multi-
modal retinal datasets, we tested the MMRAD model trained on the
constructed MMR dataset directly on the single-modal IDRiD [49] and
(Retinal Edema Segmentation Challenge) RESC datasets [65]. The IDRiD
and RESC datasets have 81 test fundus images and 15 test OCT slices,
respectively. Since each OCT sample in the RESC dataset has 128 slices,
the first layer of the SAM encoder was also made trainable to adapt to
this situation. We report the results in Table 11. Table 11 also reports the
results obtained with the same training and test datasets, which can be
regarded as an evaluation reference for the transfer diagnosis results.
Despite the different datasets being collected from different hospitals
and the great domain differences existing, the proposed MMRAD model
achieves an AUC score of higher than 0.75. Especially for the IDRiD
dataset, the transfer diagnosis results of MMRAD are still be better than
those of the many comparison models, which were both trained and
tested on the IDRiD dataset, as in Table 2. The quantitative results fully
prove the model generalization ability for data from different hospitals.

5.4.7. Effect of the fusion token

The fusion token is designed to conduct the multi-modal anomaly
detection task. To prove its superiority, we compared the fusion token
with some anomaly detection strategies based on statistical values, and
also explored the modality processing sequence for the fusion token.
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The comparison results with different design choices in the low-level extraction and prompt generation modules on the MMR dataset.

Module Design choice Anomaly localization (fundus Anomaly localization (OCT Anomaly detection (with both modalities)
modality) modality)
AUC PRO AUC PRO AUC
Low-level extraction Without pre-training 0.6628 0.3037 0.7647 0.4333 0.7257
Fourier transform 0.7197 0.3554 0.8241 0.5068 0.7524
Pretrained CNN (proposed) 0.6997 0.4303 0.8295 0.5339 0.7664
Prompt generation Without shared weights 0.6464 0.3386 0.8154 0.4573 0.7089
Shared LN; — LN, only 0.6782 0.3972 0.8405 0.4880 0.7407
Shared LN;and LN; — LN, 0.6253 0.2932 0.7706 0.3674 0.6693
Shared LN;only (proposed)  0.6997 0.4303 0.8295 0.5339 0.7664
Table 8 Table 12

The comparison results for different prompt-tuning methods on the MMR
dataset.

Comparison results for the fusion token and other fusion strategies on the MMR
dataset.

Method Anomaly Anomaly Anomaly detection
localization localization (OCT (with both
(fundus modality) modality) modalities)
AUC PRO AUC PRO AUC
Only decoder 0.6206 0.2261 0.7713 0.3008 0.6872
VPT 0.6305  0.3996  0.7895 0.4109 0.7166
AdaptFormer 0.6472  0.3176  0.8142 0.4616 0.7225
EVP 0.6979 0.4502 0.8144 0.4671 0.7758
LPT 0.6997  0.4303 0.8295  0.5339 0.7664
(proposed)
Table 9

The comparison results with different weight-sharing choices in the decoder and
mask token on the MMR dataset.

Design choice Anomaly Anomaly Anomaly
localization localization (OCT detection (with
(fundus modality) modality) both modalities)
AUC PRO AUC PRO AUC
Shared decoder 0.6846 0.3842 0.8188 0.4827 0.7624
only
Shared mask 0.6609 0.3088  0.7573 0.4584 0.7237
token only
Shared mask 0.6997 0.4303 0.8295  0.5339 0.7664
token and
decoder
(proposed)
Table 10

Comparison results of different training loss functions on the MMR dataset.

Loss Anomaly Anomaly Anomaly detection (with
localization localization (OCT both modalities)
(fundus modality) modality)
AUC PRO AUC PRO AUC
Focal 0.7210 0.3477 0.8491 0.5936 0.7773
Dice 0.6928 0.3882 0.8356 0.5187 0.7137
Lovasz 0.6451 0.3836 0.7677 0.3029 0.7086
Cross- 0.6997 0.4303 0.8295 0.5339 0.7664
entropy
Table 11
The anomaly localization transfer results of the proposed MMRAD model.
Test dataset Training dataset AUC PRO
IDRiD IDRiD 0.8375 0.3544
MMR 0.7836 0.2601
RESC RESC 0.8171 0.4371
MMR 0.7549 0.3974

11

Anomaly detection setting Multi-modal anomaly detection

AUC
Maximum 0.7338
Mean 0.4597
Fusion token (Toe—T.) 0.7456
Fusion token (T, —Tyct) 0.7664

Table 12 reports the related results. With the maximum value in both
modalities, the obtained results show a small drop when compared to
the fusion token. In contrast, the mean value fails to detect the case-level
anomalies, with an AUC score of 0.4597. We speculate that two different
cases can have similar mean values, leading to the low representation
with the mean value. For the fusion token, changing the modality pro-
cessing sequence from OCT image to fundus image, or the opposite,
results in higher AUC scores than the single-modal detection results in
Table 5. This shows that once the fusion token has seen both modalities,
it can obtain better results, regardless of the processing sequence.

5.4.8. Results for each symptom

The MMR dataset was constructed with unique labels for the
different RAO symptoms (nine in the fundus modality and eight in the
OCT modality). To explore the diagnosis ability for each single symp-
tom, we evaluated the anomaly localization performance for each
symptom, and the results are given in Table 13. For each symptom, we
consider its separability with the normal patterns while ignoring the
remaining symptoms. We found that the proposed MMRAD model shows
a satisfactory performance in most symptoms, such as the cherry-red
spot (ID 2) and neovascularization (ID 8) symptoms in the fundus mo-
dality, and the subretinal fluid (ID 3) and intraretinal fluid (ID 7)
symptoms in the OCT modality. In the fundus modality, there are two
symptoms with an AUC score of lower than 0.60, i.e., retinal hemor-
rhage (ID 4) and retinal embolus (ID 6). In the OCT modality, the
symptom of posterior vitreous detachment/epiretinal membrane (ID 8)
is the only class with an AUC score of lower than 0.75.

5.4.9. Token initialization

To explore the effect of the token initialization method on the per-
formance, we tested three different initialization methods and report the
results in Table 14. We applied the same initialization method for both
the mask token and fusion token in each test. Normal initialization
makes the initial weights follow a normal distribution with mean 0 and
standard deviation 0.01 [66]. Kaiming initialization goes a step further
by taking into account the impact of the token dimensionality [67].
These two methods had not undergone any data training process. In
contrast, the third method (pretrained token) means using the pre-
trained mask token and intersection over union (IoU) token from SAM to
initialize the corresponding mask token and fusion token, respectively.
Similar to the fusion token, IoU also gives an image-level evaluation for
the IoU score. In comparison, there are no significant differences
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Table 13
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The anomaly localization performance for each single RAO symptom on the MMR dataset.

Modality Results for each symptom
ID AUC PRO D AUC PRO ID AUC PRO ID AUC PRO
Fundus image modality 1 0.7078 0.2104 2 0.8575 0.5786 3 0.6802 0.2498 4 0.5580 0.4801
5 0.6603 0.5171 6 0.5904 0.2965 7 0.6545 0.5533 8 0.7929 0.6511
9 0.6697 0.5837
OCT image modality 1 0.8855 0.3870 2 0.7574 0.4279 3 0.8758 0.5456 4 0.8910 0.5378
5 0.8539 0.3789 6 0.8399 0.3290 7 0.8651 0.7227 8 0.6413 0.4633

Table 14
Comparison effects of different token initialization methods on the MMR
dataset.

Method Anomaly Anomaly Anomaly detection (with
localization localization (OCT both modalities)
(fundus modality) modality)
AUC PRO AUC PRO AUC
Normal 0.6844 0.4280 0.8229 0.5326 0.7493
Kaiming 0.7097  0.4274  0.8302  0.5258 0.7459
Pretrained  0.6997  0.4303  0.8295  0.5339 0.7664

between normal initialization and Kaiming initialization in Table 14.
The initialization method of pretrained token shows a similar perfor-
mance in the anomaly localization task, without obvious differences, but
the anomaly detection score shows an improvement of around 2 points.
Therefore, we finally chose the pretrained tokens from the original SAM
to initialize the mask token and fusion token in MMRAD.

5.4.10. Distribution of simulated samples

Simulated anomalies can be expected to be out-of-distribution with
healthy samples, and we verify this with the t-distributed stochastic
neighbor embedding (t-SNE) [68] visualization technique in Fig. 9.
Since the original image space has only three channels (RGB) and may
be insufficient to represent the retinal pattern, we converted the images
into the high-level embeddings space from MMRAD and visualized the
embeddings with the t-SNE technique. Fig. 9 visualizes real anomalies,
the simulated anomalies, and normal samples in both the fundus and
OCT modalities. Although there is some overlap, the distributions of the
three categories exist independently, overall, with relatively weak cor-
relations. The OCT modality exhibits greater separability, which is
consistent with the higher AUC score in Table 2. Furthermore, a wider
gap exists between the simulated anomalies and normal samples,
compared to the real anomalies, since the simulation process described
in Section 4.3.1 tends to alter the distribution more aggressively, which

LOT «  Real anomaly features .
. L

¢  Simulated anomaly features :‘:&
08 N9m1a1 fei.tures -¥ *
0.61
0.4
0.2
0.01

proves that the simulated samples can meet the out-of-distribution
condition.

6. Conclusion

Limited by the lack of paired modality samples and the significant
imaging differences results in image fusion being difficult with small-
scale medical data, and the previous anomaly detection and localiza-
tion studies have only considered single-modal settings. To this end, in
this paper, we focused on the multi-modal MADL task for retinal RAO
diseases with the fundus image modality and the OCT modality. The
MMR dataset was first constructed, which supports both anomaly
localization at the pixel level and anomaly detection at the case level.
Furthermore, we embraced the recent SAM visual foundation model and
adapted SAM for the MADL task, due to its powerful generalization
ability and the small-scale medical data. With the designed modality-
shared decoder and task-specific tokens, SAM has been given the abil-
ity to process multi-modal images. The developed anomaly simulation
and low-level prompt-tuning strategies achieve the fine-tuning process
in a pseudo-supervised manner and keep the heavy backbone weights
frozen. The adapted model (MMRAD) showed an outstanding anomaly
diagnosis ability, with a large margin over the previous state-of-the-art
model (at least 3 points in AUC score).

However, there are still some limitations. Although MMRAD per-
forms at a similar level on most specific symptoms, each modality has its
own challenging symptom (e.g., retinal hemorrhage in the fundus mo-
dality and retinal pigment epithelial detachment in the OCT modality).
Incorporating more expert prior knowledge into the anomaly simulation
process may be a possible solution for this. Currently, medical anomaly
detection, especially in the multi-modal case, is largely underexplored,
and we hope that this study will assist the community in achieving a
practical diagnosis for retinal disease.
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Fig. 9. t-SNE visualization of real anomalies, simulated anomalies, and normal samples for the fundus modality (a) and OCT modality (b). The corresponding

embeddings were extracted from the SAM latent space.
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