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A B S T R A C T   

Pine wilt disease (PWD) poses a serious threat to the worldwide pine forest resources. Unmanned aerial vehicle 
(UAV) remote sensing has been widely used for PWD control, due to its flexibility and efficiency. Although pixel- 
level detection can obtain fine detection boundaries, there have been few related works in complex scenes 
because of the difficulty of setting a preset category system and the poor generalization. A preset category system 
establishes which categories are to be labeled, and is necessary for traditional pixel-level detection. However, the 
poor generalization leads to an obvious accuracy drop when detecting PWD in new scenes. In the proposed 
approach, to address the first issue, one-class classification (OCC) is introduced to detect diseased pixels, focusing 
only on the category of diseased pine trees. However, the numerous objects but low PWD pixel proportion makes 
the model optimization unbalanced, for which balanced unbiased detection risk estimation is proposed. To 
address the second issue, a novel model consisting of three-dimensional (3D) convolutional layers and trans
former blocks is proposed to extract more robust features. A novel PWD detection framework based on deep OCC 
is finally proposed to achieve fine pixel-level PWD detection results. PWD detection experiments were conducted 
on eight UAV H2 (high spatial and spectral resolution) image strips. In total, 300 PWD samples from strip 1 
(accounting for roughly 0.009 % of the total pixels) and 400 unlabeled pixels formed the training set. The test 
experiments were conducted in the remaining seven strips to validate the model generalization. Satisfactory 
quantitative results (F1-score greater than 0.9) were obtained for all the test strips. The results indicate that the 
proposed method has a powerful ability to detect PWD in pine trees, even when the PWD proportion is low, and 
shows better model generalization than the traditional pixel-level detection methods.   

1. Introduction 

Pine wilt disease (PWD) constitutes one of the most serious world
wide conifer diseases, which is currently affecting many countries and 
regions, especially in East Asia (Hao et al., 2022; Wu et al., 2020). Once 
the epidemic occurs, it leads to irreversible changes to forest ecosystems, 
increased cost of management and disease control, and restriction of 
international trade (Lee and Cho, 2006; Mota and Vieira, 2008; Raja
sekharan et al., 2017). In recent years, increased world trade and other 
human activities involving the movement of wood products have 
increased the probability of the potential spread of PWD, and areas 
suitable for PWD have expanded due to global warming (Hirata et al., 
2017; Ikegami and Jenkins, 2018; Matsuhashi et al., 2020). Thus, 

efficient detection of PWD is both urgent and necessary. Compared to 
the traditional manual inspection and techniques based on satellite- 
borne remote sensing, unmanned aerial vehicle (UAV) remote sensing 
has been widely used for PWD detection in recent years because of the 
low cost, flexibility, and high spatial resolution (Hu et al., 2020; Lim and 
Do, 2021). 

The majority of the PWD detection methods based on UAV remote 
sensing imagery are object-level methods, which locate the diseased 
pine trees using bounding boxes. For instance, the faster region con
volutional neural network (Faster-RCNN) deep learning framework 
based on a region proposal network (RPN) and the ResNet neural 
network was used by Deng et al. (2020) to train a PWD dead tree 
detection model. Similar work was conducted by Hu et al. (2020), Park 
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et al. (2021), and Yu et al. (2021b). Despite the high mean average 
precision (mAP) that can be obtained, the rough bounding box bound
aries make some of the necessary quantitative analysis impossible. 

Conversely, pixel-level detection can diagnose the PWD for each 
pixel in the imagery without the need to consider the ratio problem, as in 
object-level detection. However, few previous works have explored 
PWD detection at the pixel level. Most of the previous studies have either 
achieved pixel-level results in simple scenes where only two main kinds 
of object exist (i.e., healthy trees and those with PWD) (Yu et al., 2021a) 
or have considered complex scenes where laborious manual labeling is 
required for each negative object (Syifa et al., 2020). Two main diffi
culties can exist when detecting PWD in complex scenes at the pixel 
level: 1) Laborious manual labeling is required for the numerous ob
jects in complex forest landscapes. For example, the pixel-level detec
tion work of Syifa et al. (2020) required the manual labeling of seven 
kinds of objects, including PWD, shadows, roads, etc. This complex 
object distribution is common in forest landscapes, where laborious 
manual labeling is typically needed. Furthermore, the severe class 
imbalance can result in the model optimization ignoring the low- 
proportion PWD objects. 2) A visible drop in accuracy can occur 
when detecting PWD in images that are different from the training 
images. The spectral heterogeneity between the training and test images 
is mostly obvious due to the influence of the imaging environment and 
instrument error, making the knowledge learned in the training images 
not applicable to the test images. Furthermore, some new objects may 
appear in the test images, causing confusion for the trained model. The 
above two problems can severely limit the performance of pixel-level 
PWD detection in complex scenes. 

To solve the first problem, one-class classification (OCC) (Bellinger 
et al., 2012; Perera et al., 2021) is introduced in the proposed method, 
which only needs a small number of labeled PWD samples. Because OCC 
only focuses on the PWD and does not need the labels of the non-PWD 
objects, a preset category system is not necessary. However, scenes 
with numerous objects but a low proportion of PWD are the most 
common in forest landscapes. This imbalance in the object distribution 
makes the traditional risk estimators (Du Plessis et al., 2015, 2014; Kiryo 
et al., 2017; Wang et al., 2016) ignore the PWD and focus on the 
dominant objects. To address this issue, a balanced unbiased risk esti
mator is proposed by copying the PWD samples to make the proportion 

balanced while keeping the unbiased characteristic. 
To solve the second problem, a novel model consisting of three- 

dimensional (3D) convolutional layers (Mäyrä et al., 2021) and trans
former blocks (Dosovitskiy et al., 2020) is introduced to extract robust 
features, to counter the spectral heterogeneity. Specifically, the spatial 
and spectral features are jointly extracted with movement along both the 
spatial and spectral dimensions, and an attention mechanism is applied 
to make the model focus only on the discriminative regions. 

In this paper, a novel PWD detection framework is proposed, based 
on deep OCC, with the aim being to achieve highly accurate pixel-level 
PWD detection results. A balanced unbiased risk estimator is proposed to 
make the optimization balanced under the low PWD proportion condi
tion, and a deep detection model is constructed to extract robust features 
from the hyperspectral remote sensing images and enhance the model 
generalizability. PWD detection experiments were conducted on eight 
high spatial and spectral resolution UAV image strips, which we refer to 
here as H2 imagery (Hu et al., 2022; Zhong et al., 2020). To the best of 
our knowledge, this study is the first to apply deep OCC to forest disease 
detection. 

2. Materials 

2.1. Study area and data acquisition 

The study area for the PWD detection was Yantai Hill, Hexi Village, 
Shandong province, China (see Fig. 1). The longitude of the study area 
ranges from 121.884◦ to 121.889◦ and the latitude ranges from 37.327◦

to 37.331◦, covering 0.312 km2. The altitude is 125.21 m, the annual 
rainfall is 750 mm, and the average temperature is 12 ◦C. The main pine 
species in the study area are Pinus massoniana Lamb, Pinus armandii 
Franch, and Pinus parviflora. 

Data acquisition was achieved using a Headwall Nano-Hyperspec 
imager mounted on a DJI M600 Pro UAV. The hyperspectral sensor 
can obtain 274 bands, in practice, with an imaging range of 400–1000 
nm and a spatial resolution of 11 cm. The acquisition time was from 
12:30 PM to 14:00 PM on September 17, 2020, when eight UAV H2 

image strips were captured. Although the sizes of the eight strips were 
slightly different, they were all approximately 4600 × 700 pixels, with 
about 30 % overlap between adjacent strips. The individual strips are 

Fig. 1. The study area, which covers 311,696 m2, is located in Hexi Village, Shandong province, China. The study area was covered by eight H2 UAV strips. The 
highlighted strip (with the red border) was used to make the training set, and the other strips formed the test set. 

J. Li et al.                                                                                                                                                                                                                                         



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102947

3

visually distinct in the mosaicked image, and are named 1–8, from left to 
right, for convenience. 

2.2. Challenges for pixel-level PWD detection 

The detection task in this study was focused on the middle stage 
(yellow needles) and late stage (reddish-brown needles) (Yu et al., 
2021b) of PWD. Compared with general detection scenes, there are two 
main challenges that would be encountered in this study area when 
detecting PWD using the traditional pixel-level detection methods: 1) 
The numerous objects make the category system difficult to set, and the 
object distribution is highly imbalanced. The objects in the study area 
include healthy pine trees, diseased pine trees, roads, bare land, houses, 
lake, grassland, bushes, soil, etc. The large number of objects represents 
a challenge for setting the category system and labeling the negative 
samples (i.e., the objects except for PWD). Moreover, the object distri
bution is highly imbalanced. For the diseased pixels, the statistical 
proportion in each strip is shown in Table 1, where three of the pro
portions are less than 0.1. The severely imbalanced distribution leads to 
the detection model optimization favoring fitting the negative samples. 
2) The eight strips were not captured at the same time period, and the 
object kinds vary from strip to strip, making it difficult to detect PWD in 
image strips that are different from the training image strip. The spectral 
heterogeneity and the unseen objects in the test strips make the 
knowledge learned in the training strip not applicable, limiting the 
generalizability. 

3. Methods 

The proposed framework consists of three basic components, as 
shown in Fig. 2. To avoid the problem of setting a category system and to 
strengthen the PWD detection generalizability, OCC is adopted as the 
basic principle of the proposed framework, which focuses on only the 
PWD samples (Bellinger et al., 2012; Piiroinen et al., 2018; Sabokrou 
et al., 2020). To deal with the imbalance problem when using OCC in 
PWD detection, as discussed in Section 2.2, the balanced unbiased 
detection risk estimator is proposed to make the optimization balanced, 
even in a low PWD condition. In addition, a deep learning technique is 
used to construct the detection model, with 3D convolutional layers and 
transformer blocks, to enhance the detection ability. 

In the proposed framework, PWD proportion estimation is the first 
component, which outputs the estimated initial PWD proportion to the 
second component, i.e., the balanced unbiased PWD detection risk 
estimation. The third component is the detection model, which extracts 
the deep hyperspectral spatial and spectral features to judge the diseased 
pixels under the balanced unbiased PWD detection risk estimation. 

3.1. PWD proportion estimation 

According to the research of De Comité et al. (1999), the background 
objects in UAV imagery have the potential to improve the detection 
accuracy by exploiting them to optimize a model jointly with the PWD 
samples in OCC. However, the PWD proportion in the imagery needs to 
be known in advance (Denis et al., 2005), which is elaborated in the next 
section. Inspired by this, kernel mixture proportion estimation (KMPE) 
(Ramaswamy et al., 2016) was utilized to estimate the PWD proportion 
in this study. As shown in Fig. 2, KMPE has two inputs: the PWD sample 
pixels and the randomly selected pixels of the background mixture ob
jects. KMPE maps these two obtained distributions of PWD and back
ground mixture to a reproducing kernel Hilbert space (RKHS), aiming to 

find the most suitable ratio that can reconstruct the actual mixture 
distribution. This component outputs the estimated PWD proportion for 
the construction of the other component, i.e., the balanced unbiased 
PWD detection risk estimation. 

3.2. The balanced unbiased risk estimator for PWD detection 

We let Xd ∈ Rd be the training data, containing np labeled positive 
samples (PWD) and nu unlabeled samples (including both PWD and non- 
PWD samples). πn and πp are the proportions of the negative samples 
(non-PWD) and positive samples in the unlabeled samples, respectively, 
whereπn = 1 − πp. Once πp is known, the number of PWD and non-PWD 
samples in the unlabeled samples can be estimated to be nuπp andnuπn. 
g : Rd→R represents the decision function mapping input data to the 
probability of being PWD, and l is the loss function of the detection 

model. R+
p

∧

(g) =
(
1/np

)∑np
i=1l(g(xi),1) measures the risk of classifying the 

positive samples as PWD. R−
u
∧

(g) = (1/nu)
∑nu

i=1l(g(xi),0) represents the 
risk of classifying all the unlabeled samples as non-PWD. The estimated 
risk for the np positive samples and nuπn negative samples in the unla

beled samples is denoted asRpn
∧

(g). The traditional unbiased risk esti
mation (Du Plessis et al., 2014) is shown in Eq. (1): 

Rpn
∧

(g) = πpR+
p

∧

(g)+R−
u

∧

(g) − πpR−
p

∧

(g) (1) 

However, if the PWD proportion value is small (i.e., having a gap in 
orders of magnitude compared to the non-PWD objects), the estimated 
positive risk of PWD would be negligible, compared to the negative risk 
of other non-PWD objects. Thus, the model optimization process would 
be severely biased toward the negative objects, rather than PWD. To 
solve this imbalance, the balanced unbiased risk estimator is proposed. 
The mathematical expression for this is as follows: 

Rpn
∧

(g) =
R+

p

∧

(g)
2

+
R−

u

∧

(g) − πpR−
p

∧

(g)
2(1 − πp)

(2) 

The hypothesis is that, if the PWD proportion value is small or large 
(i.e., an order of magnitude difference), it can be adjusted manually by 
copying or deleting PWD samples. According to the work of Du Plessis 
et al. (2014), R−

u (g) − πpR−
p (g) is actually equal toπnR−

n (g), which is the 
risk of classifying the negative samples in the unlabeled samples as non- 
PWD. R+

p (g) and R−
n (g) have a ratio of πp : πn in Eq. (1). To proportionally 

control this to 1 : 1, the estimated risk of the PWD samples needs to be 
multiplied by an adjustment factor1− πp

πp
. Fig. 3 shows the intuitive prin

ciple of balanced unbiased risk estimation when adjusting the risk ratio 
by copying the PWD samples. From the unlabeled area, the ratio of the 
PWD samples to other object samples can be estimated, which is 1:2 in 
Fig. 3. Then, based on the estimated proportion, the PWD samples in the 
labeled PWD area are copied to make the ratio with the negative samples 
in the unlabeled samples 1:1. The adjusted risk estimation can be seen as 
a special case of Eq. (1), which guarantees the unbiased property of the 
proposed balanced risk. 

Inspired by the work of Kiryo et al. (2017), to prevent the overfitting 
problem when the negative risk estimation is less than 0, the negative 
risk in Eq. (3) is corrected to a non-negative risk, and the final balanced 
unbiased risk estimator is obtained as follows: 

Table 1 
True proportion of diseased pixels in the eight strips.   

1 2 3 4 5 6 7 8 

Proportion  0.041  0.140  0.148  0.114  0.053  0.057  0.145  0.170  
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Rpn
∧

(g) =
R+

p

∧

(g)
2

+
max{R−

u

∧

(g) − πpR−
p

∧

(g), 0}
2(1 − πp)

(3)  

3.3. Detection model architecture 

The proposed detection model is composed of two main parts—3D 

convolutional layers and transformer blocks (Dosovitskiy et al. 2020)— 
which are shown in Fig. 2. Compared to a two-dimensional (2D) con
volutional layer, as used in many hyperspectral applications Liu et al., 
2021a, 2021b; Yang et al., 2018), a 3D convolutional layer is better able 
to extract the spatial-spectral features of the hyperspectral data cube 
(Mäyrä et al., 2021). The reason for introducing the transformer blocks 
is to encourage the model to pay more attention to the critical features 

Fig. 2. The proposed PWD detection framework, which consists of three main components: (1) PWD proportion estimation; (2) balanced unbiased detection risk 
estimation; and (3) the detection model. Firstly, the PWD proportion in the strip is estimated using the labeled PWD samples and the randomly selected mixture 
samples (including both PWD and non-PWD objects). The balanced unbiased detection risk is then estimated and acts as the criterion to optimize the model. Note that 
only a small number of PWD samples need to be labeled. 

Fig. 3. The basic idea of the proposed balanced unbiased detection risk. The balance is achieved by adjusting the proportion of the PWD samples and the negative 
samples in the unlabeled samples to be 1:1 using the estimatedπp. 

Fig. 4. Tensor change in the detection model corresponding to Fig. 3. PS: patch size; BN: batch normalization; ReLU: rectified linear unit; MLP: multilayer per
ceptron; LN: layer normalization; FC: fully connected. 
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and to correlate the global features. The detailed change flow of the 
inner tensor is given in Fig. 4. The patch size (PS) is a hyper-parameter to 
control the spatial size of the input patch cube. The 3D convolutional 
layers first act as the feature extractor for the input with size PS × PS ×

274 in the first layer (Li et al., 2017), and then the extracted features are 
reshaped to a 2D representation to feed into the transformer block. After 
being processed in the transformer block for two iterations, the class 
token is taken from the transformer output and followed by a fully 
connected layer, to give the final PWD detection probability. The 
detection model was implemented using PyTorch 1.10.1 in this study 
(Imambi et al., 2021). 

3.4. Experimental settings 

3.4.1. Sample selection 
To guarantee the geographic isolation characteristic, as in the real 

world, strip 1 was used to make the training set, and the remaining strips 
formed the test set, as shown in Fig. 1. To demonstrate the advantage of 
the proposed framework in reducing the labeling workload, only 300 
diseased pixels (as discussed in Section 4.3.2) in strip 1 were labeled 
(accounting for roughly 0.009 % of the total pixels) and 400 unlabeled 
pixels were selected randomly to form the training set. The test set 
contained 10,000 PWD pixels and 10,000 other object pixels in each test 
strip. For each pixel, its surrounding spatial information was incorpo
rated to form a patch with the size of 15 × 15 pixels (as discussed in 
Section 4.3.1) as the input. 

3.4.2. Comparison methods 
The OCC detection models used for the comparison were one-class 

support vector machine (OCSVM) (Schölkopf et al., 1999), one-class 
biased support vector machine (BSVM) (Piiroinen et al., 2018), and 
deep support vector data description (Deep SVDD) (Ruff et al., 2018). 
OCSVM and BSVM are classical OCC models based on the support vector 
machine (SVM) mechanism. As an important breakthrough, Deep SVDD 
has successfully introduced a deep learning model into the OCC com
munity using only labeled positive samples. Although some recent deep 
OCC models have achieved satisfactory results using both labeled and 
unlabeled samples (Lei et al., 2021; Zhao et al., 2022), the used risk 
estimators have little ability to deal with the imbalance problem, and 
fail in the PWD detection task. Thus, these models were not compared in 
the experiments conducted in this study. 

3.4.3. Evaluation metrics 
Three PWD evaluation metrics are considered in this paper

—precision (P), recall (R), and F1-score—for which the formula ex
pressions are given below. The true-positive (TP), false-positive (FP) and 
false-negative (FN) pixels are the basic elements used to compute the 
metrics. The precision reflects the correct detection rate in pixels that 
are certified as PWD, and the recall shows how many PWD pixels have 
been correctly detected. Because the precision and recall are always 
changing in opposite directions, the F1-score is introduced to measure 
the comprehensive detection capability for PWD and other objects. 

P =
TP

TP + FP
(4)  

R =
TP

TP + FN
(5)  

F1 =
2PR

P + R
(6)  

4. Results 

4.1. Quantitative analysis of the detection results 

The proportion of diseased pixels in the training strip (i.e., strip 1) 

was first estimated, using the positive part in the training set as the PWD 
sample input, and 2000 pixels were randomly selected from the strip as 
the background mixture input. The obtained estimated proportion was 
0.013, which represents an order of magnitude difference in the ratio of 
PWD to non-PWD, and shows a slight deviation from the true proportion 
listed in Table 1 The low and inaccurate estimation brings great chal
lenges to the following PWD detection. Then, based on the estimated 
proportion, the balanced unbiased risk was estimated, and the proposed 
framework was applied for PWD detection in each test strip. 

The quantitative evaluation results are listed in Table 2, in which the 
red, green, and blue figures represent the best precision, recall, and F1- 
score values in each strip, respectively. Compared to OCSVM, BSVM 
obtains better precision and recall scores, which shows the benefit of 
using unlabeled objects to improve the PWD detection performance. 
Nevertheless, BSVM is heavily dependent on a well-designed hyper- 
parameter selection process, limiting its practical application. Deep 
SVDD shows a significant improvement in all three metrics, compared to 
BSVM. This improvement implies that the matrix representation of the 
spatial information is superior to the vector form, and the deep features 
have a better discrimination ability and generalization power than 
linear features. The proposed framework achieves the highest recall and 
F1-score values in all seven strips, which are all above 90 %. As the recall 
rate is much more important than the precision in practical detection, it 
can be considered that the proposed framework is suitable for use in real 
applications. 

Another great advantage of the proposed framework is that no 
threshold needs to be set, compared to BSVM and Deep SVDD, because 
0.5 is a natural threshold, due to the use of the sigmoid activation 
function in the last layer. In conclusion, the quantitative comparison 
shows that the proposed framework is superior to the existing one-class 
detection models when dealing with the PWD detection task. 

4.2. Qualitative analysis of the detection results 

The qualitative results are shown in Fig. 5, where the white region 
represents the diseased pine trees. Consistent with the high-precision 
and low-recall results in Table 2, OCSVM identifies the fewest 
diseased pixels in the red rectangle area. Conversely, more correct 
diseased regions are discriminated by BSVM, which leads to both the 
high precision and high recall in Table 2. Due to the limited image 
feature representation ability of a one-dimensional vector, the detection 
results of both OCSVM and BSVM have some noisy points and are not 
sufficiently smooth. Deep SVDD identifies most regions as diseased 
pines, and most of the non-diseased pixels in the red rectangle area are 
misclassified. From this comprehensive comparison, the proposed 
framework shows a better diagnostic capability and balance, in view of 
the smoothness and accuracy. 

Moreover, the qualitative detection results of the proposed detection 
framework were converted to polygon vector format, and are displayed 
in Fig. 6 (partially enlarged) and Fig. 7 (large scale). From the 
perspective of both the partially enlarged and large-scale visual effects, 
although only a few diseased pixels were labeled, without labeling the 
various negative objects, the proposed framework can still distinguish 
the diseased pine trees well from the many other objects (i.e., road, 
grass, bare areas, healthy trees, etc.) and can obtain fine detection 
boundaries. 

4.3. Sensitivity analysis 

4.3.1. Detection accuracy sensitivity to patch size (area) 
As is well known, patches are always adopted as the input mode 

when completing pixel-level discrimination, so as to use the rich spatial 
features. A larger patch size means more spatial information to use (Cao 
et al., 2018; Zhang et al., 2016), but also increased computational 
complexity, interference, and training time. For a given UAV image, the 
appropriate patch size is related to its spatial resolution, spectral 
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resolution, and feature distribution characteristics. To achieve efficient 
detection, choosing a suitable patch size acts as the important first step. 
In the study area, different patch sizes were set, i.e., 7 × 7, 11 × 11, 15 ×

15, and 19 × 19, corresponding to areas of 0.59 m2, 1.46 m2, 2.72 m2, 
and 4.36 m2, respectively. 

The results are shown in Fig. 8a. The F1-score is used to 

Table 2 
Quantitative comparison of the detection results for the test set made up of seven image strips, where the red, green, and blue figures represent the best precision, 
recall, and F1-score in each strip. The proposed framework achieved the highest recall and F1-score values in all the test strips.  

Strip OCSVM BSVM Deep SVDD Ours 

P R F1 P R F1 P R F1 P R F1 

2  1.000  0.302  0.464  1.000  0.573  0.729  0.772  0.853  0.811  0.870  0.999  0.931 
3  0.997  0.339  0.506  1.000  0.652  0.789  0.823  0.872  0.847  0.884  0.996  0.936 
4  0.939  0.306  0.461  0.956  0.837  0.893  0.821  0.905  0.861  0.998  0.932  0.964 
5  1.000  0.614  0.761  1.000  0.538  0.700  0.899  0.869  0.884  0.840  0.998  0.912 
6  0.999  0.606  0.754  0.998  0.760  0.863  0.799  0.908  0.850  0.971  1.000  0.985 
7  0.974  0.217  0.355  0.989  0.636  0.774  0.672  0.856  0.753  0.952  0.883  0.916 
8  0.938  0.309  0.465  0.945  0.614  0.744  0.672  0.848  0.750  0.929  0.921  0.925  

Fig. 5. Qualitative results, where the white region represents the diseased pine trees. The proposed framework achieved the closest detection map to the ground truth 
(GT), with less noise and a higher accuracy than the other compared models. 
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comprehensively consider the precision and recall rate. A higher F1- 
score indicates a better performance in one test strip, while a tight 
grouping of scores between test strips indicates a more stable perfor
mance. As can be seen, higher and more stable results are obtained as the 
patch size increases, but this increase slows down around a patch size 
setting of 15 × 15. The F1-score distribution is not even for patch sizes of 
7 × 7 and 11 × 11, where the range is larger than 0.2. Conversely, a 
tighter grouping of results is obtained for patch sizes of 15 × 15 and 19 
× 19, and almost all the strips show an F1-score of above 0.9 using a 
patch size of15× 15. There is a slight drop in F1-scores between the 
patch sizes of 15 × 15 and 19 × 19, which may suggest that a patch size 

of 19 × 19 brings some interference and holds back the detection ability. 
Thus, the patch size of15× 15, covering 2.72 m2, was chosen as the best 
patch size setting. 

4.3.2. Detection accuracy sensitivity to labeled PWD sample number 
Due to the rich spectral information of hyperspectral pixels, and the 

characteristic of OCC, in that it only requires labeled PWD samples 
(Sabokrou et al., 2020; Zhao et al., 2022), rather than a complex cate
gory system, the proposed framework has a low requirement for labeled 
PWD pixels. To further make this requirement clear, a comparison 
experiment with different numbers of labeled PWD pixels was 

Fig. 6. Partially enlarged visual detection results, which show that fine pixel-level detection results can be obtained. The obtained diseased boundaries are smooth 
and accurate. Although no labeled negative samples (non-PWD objects) were given during the training, the various non-PWD objects (e.g., roads, bushes, grasses, and 
healthy trees) in the above three scenarios have been correctly recognized. 

Fig. 7. Large-scale qualitative detection results of the proposed framework on the eight strips, for which the raster results have been converted to polygon vector 
format (the red lines). Although only 300 PWD pixels were labeled, the proposed framework can still discriminate PWD from most of the other objects. 
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conducted, and the results are shown in Fig. 8b. 
In Fig. 8b, a higher dot means a better detection performance, and 

tightly grouped dots mean stable and robust results obtained in the 
corresponding labeled PWD sample number setting. The overall trend is 
that a better and more robust performance can be achieved as the 
number of labeled PWD samples increases. In fact, the somewhat un
usually good results obtained using just 10 labeled pixels also makes 
sense because the balanced risk estimation averages the risk in all the 
labeled pixels, so that the sample quality is much more important than 
the quantity in the proposed framework. The performance gain with an 
increase in quantity actually comes from the increase in overall sample 
quality. With 300 labeled PWD pixels, the F1-scores for the eight strips 
are all over 0.9, and a slightly lower detection performance is shown 
with 400 labeled PWD pixels. Thus, the setting of only labeling 300 PWD 
pixels for the proposed framework in this study area was chosen. By 
labeling the PWD pixels using the ROI tool in ENVI (Exelis, 2015), the 
labeling of the 300 samples could be completed in several seconds. 
Hence, the proposed framework can achieve a satisfactory performance 
with a low human labor cost. 

4.4. PWD detection generalizability: OCC vs Traditional pixel-level 
detection 

To show the better generalization ability of the proposed framework, 
100 pixels for each kind of negative object were labeled (including 
healthy pine trees, road, bare soil, grassland). In addition, the balanced 
risk estimation was changed to cross-entropy loss (Janocha and Czar
necki, 2017), based on the current framework. The results are listed in 
Table 3. A high F1-score of 0.926 can be achieved in strip 1 when using 
traditional pixel-level detection, but the F1-scores of test strips 2–7 show 
an obvious drop, compared to the results in Table 2 when using tradi
tional pixel-level detection (Haut et al., 2018). The reason for this may 
be the focus difference between OCC and binary classification, in that 
OCC only focuses on the PWD objects, but binary classification also fo
cuses on the negative objects, in addition to PWD. Furthermore, new 

negative objects may occur in other image strips and result in confusion 
for the traditional pixel-level detection model (Bendale and Boult, 
2016). Based on the above points, it is reasonable to say that OCC has a 
better generalizability than general binary classification. 

5. Discussion 

Currently, object-detection methods are used often for PWD detec
tion due to their simplicity and the fact that they do not require any 
adaptation (Deng et al., 2020; Park et al., 2021; Wu et al., 2021; Yu et al., 
2021b). In contrast, pixel-level detection methods always perform 
poorly in complex scenes due to the category system problem and the 
poor generalizability, as mentioned in the Introduction section. How
ever, PWD detection at the pixel level is necessary for the subsequent 
statistical analysis. To solve this dilemma was the main motivation for 
this study. 

OCC has great potential to deal with the above problem, but has 
received little attention from forestry researchers, due to the differences 
in the research fields. Compared to the traditional pixel-level detection 
methods (Syifa et al., 2020), OCC only needs a small number of labeled 
PWD samples. The labeling workload is thus reduced, and there is no 
need for a category system, which is a great benefit for practical 
detection. Furthermore, the boundaries constructed by OCC closely 
surround the diseased samples, rather than a boundary between PWD 
samples and negative samples, leading to better model generalization, as 
shown in Section 4.4. 

The main contribution of this study is that we introduced OCC and 
solved the imbalance problem when using OCC for pixel-level detection, 
to achieve fine pixel-level detection results. Specifically, the imbalance 
problem of the traditional unbiased detection risk, as mentioned in 
Section 3.2, makes the model optimization favor the dominant objects 
and results in low recall under the low PWD proportion condition, as 
shown in Table 1. This problem was solved by adding balance to the 
original detection risk by adjusting the PWD proportion while keeping 
the unbiased characteristic. 

Fig. 8. Sensitivity analysis for the input patch size and the number of labeled PWD pixels for training. (a) The effect of different patch sizes on the detection F1-score. 
(b) The effect of different PWD sample numbers on the detection F1-score. The results show that robust F1-scores can be obtained under a patch size of 15 × 15 
(which is equal to an area of 2.72 m2) and a labeled pixel number of 300. 

Table 3 
The PWD detection results obtained using traditional pixel-level detection (i.e., binary classification). A high F1-score of 0.926 is obtained in strip 1, but the F1-scores 
of test strips 2–7 show an obvious drop compared to the results in Table 2.  

Strip 1 2 3 4 5 6 7 8 

P  0.862  0.668  0.722  0.817  0.798  0.737  0.731  0.861 
R  1.000  1.000  1.000  0.967  0.925  0.985  0.999  1.000 
F1  0.926  0.801  0.839  0.886  0.856  0.844  0.844  0.925  
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6. Conclusion 

This study aims at achieving fine pixel-level PWD detection results, 
compared to the object-level detection used in most of the existing 
works. A novel PWD detection framework is proposed to deal with the 
difficulties when conducting pixel-level detection in complex forest 
landscapes, i.e., the need for a complete category system and the poor 
generalization. A preset category is difficult to set because there are 
numerous kinds of objects in complex forest landscape. Furthermore, the 
laborious labeling work is always necessary to obtain satisfying results. 
The poor generalization is common due to the spectral heterogeneity 
and the unseen objects, resulting in an obvious accuracy drop when 
detecting PWD in test images. 

To avoid setting a category system, OCC is adopted as the basic 
principle of the proposed framework, which focuses on only the PWD 
samples. Because the traditional unbiased risk estimator favors the 
dominating negative objects (non-PWD) and the optimization of low- 
proportion PWD is ignored, the balanced unbiased detection risk esti
mator is proposed to make the optimization balanced. The hypothesis is 
that, if the PWD proportion value is small (Order of magnitude differ
ence), it can be adjusted manually by copying PWD samples to make the 
risk of PWD and non-PWD objects balanced. To increase the general
ization ability, a novel model consisting of three-dimensional (3D) 
convolutional layers and transformer blocks are constructed to extract 
more robust features. 3D convolution is more suitable for hyperspectral 
cube than 2D convolution due to the slide in spectral dimension, and the 
transformer blocks encourage the model to pay more attention to critical 
features and to correlate global features. 

PWD detection experiments were conducted on eight UAV H2 strips, 
with an imaging range of 400–1000 nm and a spatial resolution of 11 
cm. Strip 1 was used to make training set and the remaining strips were 
used to make test set. The results showed that the proposed method can 
obtain fine pixel-level results with only a small number of labeled PWD 
samples (300 pixels in each strip, accounting for roughly 0.009 %). 
Furthermore, the proposed method has a better generalization ability 
than the existing pixel-level detection methods, which is a great benefit 
for practical usage. Considering the reduced labor cost and better 
generalization, this research has important practical significance for 
PWD control. 
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