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Abstract— Hyperspectral anomaly detection (HAD) aims to
find small targets deviating from surroundings in an unsupervised
manner. Recently, various deep models have been applied to
HAD, such as autoencoder series and generative adversarial
networks (GANs) series, which mainly use a proxy task, i.e., iter-
atively reconstructing low-frequency components (backgrounds)
to separate anomalies (two-step paradigm). However, in such
an unsupervised manner, most deep HAD model is trained
and tested on the same image. Since the learned low-frequency
background varies from image to image and the trained model
cannot be directly transferred to unseen images. In this arti-
cle, the one-step detection paradigm is first proposed, where
the model is optimized directly for the HAD task and can
be transferred to unseen datasets. The one-step paradigm is
optimized to identify the spectral deviation relationship according
to the anomaly definition. Compared with learning the specific
background distribution in the two-step paradigm, the spectral
deviation relationship is universal for different images and guar-
antees transferability. Furthermore, we instantiated the one-step
paradigm as an unsupervised transferred direct detection (TDD)
model. To train the TDD model in an unsupervised manner,
an anomaly sample simulation strategy is proposed to generate
numerous pairs of anomaly samples. A global self-attention
module (GAM) and a local self-attention module (LAM) are
designed to help the model focus on the “spectrally deviating”
relationship. The TDD model was validated on six public datasets.
The results show that TDD is superior to the recent two-step
methods in detection and transferability aspects.

Index Terms— Anomaly detection, deep learning, hyperspec-
tral imagery (HSI), spectral deviation, unified model.
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I. INTRODUCTION

DUE to the rich spectral information, hyperspectral
imagery (HSI) can be used to detect anomalies with little

spatial information [1], [2]. Hyperspectral anomaly detection
(HAD) is aimed at detecting pixels that deviate spectrally from
the surroundings [3] and has been proven valuable in many
areas, including infected tree detection [4], rare mineral detec-
tion [5], and defense application. Anomalies always occupy a
low proportion of the image and refer to man-made targets,
natural objects, and other interferers [4]. To some extent,
HAD is equivalent to unsupervised small target detection,
where the single target ratio is in range [0.0019%, 0.48%]
statistically.

In recent years, deep-learning-based methods have become
the mainstream methods [6], [7], [8], [9], where most methods
follow the two-step detection paradigm in the first step, and
the model learns the background distribution via a proxy
task, such as background reconstruction [10], [11], [12], [13].
In the second step, the anomalies are identified by measuring
the difference between the input image and the reconstructed
background. This two-step detection paradigm leads to two
serious problems: 1) a proxy task may obtain suboptimal
results because the basic assumption of the proxy task for
HAD may not hold [14]. The autoencoder (AE) assumes
that the background is more easily reconstructed than the
anomalies. Unfortunately, the reconstruction ability of the AE
may be migrated to the anomalies, especially when the
background distribution is complex [15]. Similarly, generative
adversarial networks (GANs) consider that the background
can be generated more easily than anomalies [16], but GAN
models may also generate samples that are out of the normal
background manifold [14], [17]; and 2) the trained model lacks
transferability to different images because it aims to learn
a certain background distribution in the training stage [18].
The background distribution varies in different images, which
hinders the transferability. Thus, the deep-learning-based HAD
models are trained and tested on the same image [1], [6].
Although Li et al. [19] attempted to give an HAD model
transferability, the HAD model was trained in a supervised
manner and was not suitable for a real application.

To this end, the one-step detection paradigm is proposed,
where the detection model is optimized directly for the HAD
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Fig. 1. Comparison between the two-step paradigm of the traditional model
and the proposed one-step paradigm.

task, and the trained model can be transferred to unseen
datasets. Fig. 1 shows the comparison of two paradigms. The
two-step paradigm focuses on learning specific background
distribution while one-step paradigm aims to learn the spectral
deviation relationship according to the anomaly definition. The
anomaly map is optimized at the training stage and output
directly at the test stage without the need of any postprocessing
steps. The deviation relationship is modeled as the conditional
probability of the original spectra given the background. Since
the spectral deviation relationship is universal in varying
background, it guarantees the model transferability for unseen
scenes. The proposed one-step detection paradigm provides
an abstract framework for designing the transferring detection
model.

Furthermore, we instantiated the one-step paradigm as the
transferred direct detection (TDD) model. To train the TDD
model in an unsupervised manner, an anomaly sample simu-
lation strategy is designed. Following the anomaly definition,
three points including “surrounding context,” “spectral dif-
ference,” and “infinite” are focused to inspire the simulation
process. Given an HSI image, patches are cropped to act as the
surrounding context rather than the whole image. Some data
argumentation techniques (e.g., channel shuffle) are used to
simulate anomaly pixels with spectral difference. The infinite
property is guaranteed by making the sample simulating
process full of randomness. Numerous simulated samples train
the TDD to learn the spectral deviation relationship. The TDD
architecture simply follows the U-Net architecture. To make
the TDD forget the specific background and learn the deviating
relationship between anomalies and background, we design the
global self-attention module (GAM) and a local self-attention
module (LAM) in the decoder part. The GAM calculates the
correlation for all the pixels, while the LAM calculates the
correlation for pixels in the local range. GAM and LAM
are plug-and-play without changing the feature dimension.
The TDD model was validated on six public HAD datasets,
where the hyperspectral digital imagery collection experiment
(HYDICE) dataset was used for unsupervised training and the
remaining datasets were inferred directly, without further fine-
tuning. The results show that the proposed TDD model can

successfully overcome the limitation of the traditional model
training and testing on a single image and has a powerful
detection ability and excellent transferability.

The main contributions of this article can be summarized
as follows.

1) The one-step detection paradigm for the HAD task is
proposed, where the detection model is optimized directly for
the HAD task, and the trained model can be transferred to
unseen datasets. The two-step paradigm focuses on learning
specific background distribution while the one-step paradigm
aims to learn the spectral deviation relationship according to
the anomaly definition.

2) The one-step paradigm is instantiated as the TDD model.
An anomaly sample simulation strategy is designed to train
the TDD model in an unsupervised manner. The generated
anomaly samples then optimize the TDD model directly for
the HAD task.

3) A GAM and an LAM are designed to help the model
focus on a “spectrally deviating” relationship, rather than
a specific background. The modules are both plug-and-play
without changing the feature dimension.

The rest of this article is organized as follows. Section II
introduces the current algorithms for the HAD task. Section III
describes the one-step detection paradigm and the TDD model.
Section IV presents the comparative results and the model
analysis. Finally, Section V concludes the article. Code is
available at https://github.com/Jingtao-Li-CVer/TDD.

II. RELATED WORK

The current HAD models can be divided into three main
categories: 1) statistics-based models; 2) representation-based
models; and 3) deep-learning-based models. In addition to
reviewing the above algorithms, the definition of the hyper-
spectral anomalies is also discussed to be clearer.

A. Statistics-Based Models

The statistics-based detection models assume that the back-
ground conforms to a certain statistical distribution [20],
and the pixels far from the background distribution are
regarded as the anomalies [4]. The Reed–Xiaoli anomaly
detector (RX-AD) [21] is a milestone statistical method which
assumes that the background obeys a Gaussian distribution,
and the Mahalanobis distance between the test pixel and the
obtained distribution is used to measure the anomaly degree.
Inspired by the classical RX detector, a series of exten-
sions based on the generalized likelihood ratio test (GLRT)
have [22] been proposed such as the kernel RX-AD [23],
weighted-RX-AD and linear-filter-based RX-AD [24], the
support vector data description (SVDD) [25], multiple-
window AD (MWAD) in [26] using multiple windows to
perform anomaly detection adaptively, guided filtering-based
AD [27], and spectral–spatial feature extraction-based AD [3].
Most recently, Chang [28] and [29] deviated from the
GLRT-based detectors and designed a signal-to-noise ratio
(SNR)-based AD, including the GLRT-based detectors as its
special cases. Subsequently, Chang [22] and [30] proposed
a target-to-anomaly conversion mechanism, which converts
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many well-known target detectors (e.g., constrained energy
minimization (CEM) subpixel detector) to the correspond-
ing anomaly versions (e.g., the CEM anomaly detector).
Chang et al. [31] showed that these detectors can be further
improved via an iterative process. However, the statistics-based
methods make various distribution assumptions, such as the
assumption of a Gaussian distribution, which may not hold
in complex backgrounds and lead to unsatisfactory detection
results [32].

B. Representation-Based Models

The representation-based models detect anomalies using
some of the HSI properties, such as the low-rank characteristic
of the background or the sparse characteristic of the anoma-
lies [33], [34]. The obtained sparse component then represents
the anomalies. Low-rank and sparse-matrix decomposition
(LSDM) [35] has been successfully applied for the HAD
task, by decomposing the HSI into a low-rank background
and sparse anomalies. Candès et al. [36] implemented the
LSDM technique with the robust principal component analysis
(RPCA) algorithm. Zhang et al. [37] focused more on the
low-rank prior and proposed a new Mahalanobis-distance-
based detector. To increase the background suppression ability
further, Chang has proposed many improved LSDM-based
detectors such as OSP-GoDec [38], OSP-AD [39], SDP [40],
and effective anomaly space (EAS) [41]. Besides, some
researchers have used tensor representation to reflect the 3-D
structure of the HSI [42] and collaborative representation to
reconstruct the pixel such as the tensor-decomposition-based
method (TDAD) [43], tensor principal component analysis
(TPCA) [44], and a prior-based tensor approximation (PTA)
[45]. However, the above representation-based methods rely
on image-specific priors or a constructed dictionary for the
certain background, which limits the transferring ability for
different scenes.

C. Deep-Learning-Based Models

The deep-learning-based methods always assume that the
background can be reconstructed better than the anoma-
lies. They mostly follow the two-step detection paradigm,
where the first step involves training a deep reconstruction
model and the second step involves outputting the detec-
tion map using the reconstructed background [6], [46], [47].
Wang et al. [6] proposed a classical autonomous HAD network
(Auto-AD), in which the background is reconstructed by
the AE and the anomalies appear as reconstruction errors.
An adaptive-weighted loss function was also designed to
further suppress the anomaly reconstruction. Xie et al. [11]
proposed a spectral constrained adversarial AE (SC_AAE) to
perform background suppression and discriminative represen-
tation extraction. Wang et al. [1] designed a deep low-rank
prior-based method (DeepLR), which combines a model-
driven low-rank prior and a data-driven AE. DeepLR can be
seen as the extension of Auto-AD. Li et al. [12] developed a
sparse coding (SC)-inspired GAN for weakly supervised HAD,
which learns a discriminative latent reconstruction with small
errors for background pixels and large errors for anomalous

ones. Arisoy et al. [13] trained a GAN model to generate
a synthetic background image which is close to the original
background image. Despite the excellent performance, the
two-step detection paradigm can cause suboptimal results
and poor transferability (as discussed in Section I). Although
Li et al. [19] have introduced a convolutional neural network
(CNN) that can also output the anomaly map directly, the
model is trained in a supervised manner and limited in certain
anomaly categories. The proposed one-step paradigm is aimed
to tackle these problems.

D. Definition of Hyperspectral Anomalies

Most related works define the hyperspectral anomalies in a
qualitative manner, which stresses that anomaly pixels deviate
from the surroundings. There are no specific metrics for the
anomaly definition. This is understandable since the anomalies
tend to defy any kind of precise specification [48]. In other
words, since the anomalies are always varied and unknown,
it is easy to find counterexamples for any specific quantitative
definition. Despite this, the difference between the hyperspec-
tral anomalies and spatial anomalies can be clearly defined.
Due to the high spectral resolution, both spectral and spatial
deviations exist for the hyperspectral anomalies while only
spatial deviation exists for the spatial anomalies [49].

Readers can understand the hyperspectral anomaly def-
inition by tracing the origin of the task. As claimed by
Chang et al. [31], this taxonomy was initially used in military
field, where they want to find the small targets without any
prior knowledge. From this perspective, the HAD task is
equivalent to the unsupervised small target detection.

For the anomaly score, it can be quantitatively defined
depending on the proxy tasks. Statistics-based models learn the
statistical background distribution [4], [20], and the anomaly
score is computed by some distance metric between the
pixel and the background distribution. Representation-based
models mostly decompose the background into the low-rank
and sparse components [33], [34]. The sparsity degree is
always treated as the anomaly degree. Deep-learning-based
models are mostly trained to reconstruct the background [6],
[46], [47], and the reconstruction error is considered as the
anomaly score. The above three categories are detailed before.
The definition of anomaly score is varying according to the
detecting principle. For the proposed one-step detector, the
anomaly score is defined as the conditional probability given
the image distribution (detailed in Section III-A).

III. PROPOSED MODEL

In this section, we first formulate the one-step detection
paradigm, and then introduce the instantiated model TDD (as
shown in Fig. 2). Converting the focus from certain back-
ground into the spectral deviation relationship, the one-step
detection paradigm optimizes the model directly for the HAD
task and the trained model can be transferred. The TDD model
is introduced in four aspects including the designed anomaly
sample simulation strategy, model architecture, training loss
and model transferability.

Authorized licensed use limited to: Wuhan University. Downloaded on December 22,2024 at 14:21:56 UTC from IEEE Xplore.  Restrictions apply. 



5517515 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 2. Overview of the TDD model, which instantiates the proposed one-step
detection paradigm. The TDD model is trained using simulated sample pairs
and has the ability to infer the test image without any fine-tuning.

A. Two-Step Versus One-Step Detection Paradigm

Given a hyperspectral image X ∈ RH×W×R , where H , W ,
and R are the height, width, and channel number, respectively.
X = B + A [6], where B is the background component and
A is the anomaly component. The HAD task is a function f
mapping X to the estimated detection map M̂ ∈ RH×W . The
value of M̂ represents the anomaly degree of the corresponding
pixel. In this section, we first review the traditional two-step
detection paradigm and then introduce the one-step one to
show their difference.

1) Two-Step Detection Paradigm: The traditional deep
HAD models separate f into two steps: f1 and f2. The
mappings of f1 and f2 are shown in (1) and (2). f1 adopts
a proxy task and always outputs a reconstruction version X′.
X′ is expected to only reconstruct the background. f2 then
computes the difference between X and X′ using a certain
metric to obtain M̂. The model optimization objective is to
minimize the difference between X and X′ of f1 to learn P(X),
as in (3), where Ld is used to compute the matrix difference
with some metric

f1 : X →X′(LearnP(X)) (1)

f2 :
(
X,X′

)
→ M(ComputeA) (2)

Loss = Ld
(
X,X′

)
. (3)

The anomaly score is defined as the reconstruction error at test
stage. Although the two-step strategy can achieve satisfactory
results, the adopted proxy task can lead to suboptimal results
and poor transferability, as discussed in Section I.

2) One-Step Detection Paradigm: To overcome these limi-
tations, we propose a one-step detection paradigm, where the
model outputs M̂ from X directly, as in (4). The optimiza-
tion objective directly minimizes the difference between the
estimated M̂ and the corresponding ground truth M, as in (5)

f : X →M̂(LearnP(B | X) > P(A | X)) (4)

Loss = Ld

(
M,M̂

)
. (5)

The anomaly score for each pixel xi in M̂ is described
as the conditional probability P(xi | X). A lower occurrence
probability P(xi | X) implies a higher anomaly degree. Dif-
ferent from the two-step methods learning certain P(X), the

one-step paradigm learns the deviation relationship P(B | X) >

P(A | X). The model is trained to output P(xi | X) constrained
by the inequality. Since anomalies are considered appeared
with a low probability and the deviation inequality between A
and B holds true in all the hyperspectral scenes, the trained
detector can be used directly for the unseen scenes.

Algorithm 1 One-Step Detecting Paradigm
Input: Generated anomaly samples with some strategy

Training stage (1 epoch):
1: Select one paired sample (X, M), where (10) holds.
2: Predict estimated anomaly map M̂ for X
3: Compute the loss Ld(M,M̂)

4: Network backward
Testing stage for any unseen image:

1: Cropped the test image into patches
2: Predict the anomaly map for each patch
3: Combine into the final anomaly map

Output:A trained model with the transferring ability

To train the one-step detector to output P(xi | X) constrained
by P(B | X) > P(A | X), lots of paired samples (X, M) are
needed due to the data-driven property of the deep learning
(as in Algorithm 1). For each image pixel Xi , its ideal
corresponding ground truth Mi is the anomaly score as in (6).
The ranking relationship of anomaly score is given in (7). The
required training samples can be acquired with many methods
in practice and we only give a high-level description in this
section. The optimization loss for the deviation relationship
P(B | X) > P(A | X) can be ranking loss or proxy classifica-
tion loss [50], [51]

Mi = P(xi | X) (6)
Mi (xi ∈ B) > Mi (xi ∈ A). (7)

At the test stage, the patches are cropped and inferred in turn
as in Algorithm 1. The inferring patch size is an adjusted
hyperparameter. The inferring patch size decides what extent
of the surrounding environment is used to judge the anomaly.
In the Section IV-C, we showed that TDD was robust to
the inferring patch size. This is understandable since the
hyperspectral anomalies always occupy a low ratio of the
image and even 1/10 of the image surrounding is enough for
the TDD to judge the deviation relationship.

Compared with the two-step detection paradigm, the
one-step detection paradigm has two main advantages,
as shown in Fig. 1: 1) the model is optimized directly for
the HAD task, without any postprocessing process (i.e., f2);
and 2) transferability can be achieved since the model learns
unified relationship P(B | X) > P(A | X) rather than a specific
distribution of P(B) or P(A).

B. Anomaly Sample Simulation

Anomaly samples are necessary to optimize the model as
in (5). Considering that real anomaly samples are difficult to
obtain in real applications, anomaly simulation is needed. The
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Fig. 3. Proposed anomaly sample simulation strategy.

proposed simulation strategy is designed to create a lot of
paired samples meeting the deviation inequality (7).

To simulate the required samples (X, M) for the model
to learn P(B | X) > P(A | X), three key points need to be
concerned in particular. First, most works treat B as the local
context [14], [21], and thus, we can use a patch as the input
unit rather than the whole image. This design not only avoids
interference from distant pixels but also increases the sample
number. Second, a large spectral difference between A and B
must exist to make the inequality (10) hold. Increasing the
spectral difference between xi and X means the decrease in
P(xi | X). Third, the simulated anomalies must be large in
number. Due to the powerful feature representation ability of
deep models, a small number of A and B may train the model
to learn specific anomaly categories P(A) or P(B) rather than
the desired relationship learning.

Based on the above three points, we designed an anomaly
sample simulation strategy consisting of three procedures,
an example of which is provided in Fig. 3. Note that both
T and X are hyperspectral images and we use T to denote
the cropped patch of X. Inequality (10) holds true for both T
and X.

Procedure 1: Anomalous region selection. After cropping
the entire training image into patches, this operation is
performed for each patch in turn. Although hyperspectral
anomalies occupy the low ratio in the whole image, they
would have relatively larger ratio in the cut patches. This
procedure requires the control of the anomaly area size and
training patch size. Anomaly area size determines how large
an anomaly will be detected at test stage. The training patch
size defines how large the concept of “surrounding” is. For
the size hyperparameter of training patches, the proposed
model is robust to it in a wide range except for the very
small patch size (e.g., patch size 5 in the HYDICE dataset)
(detailed in the analysis in Section IV-C). For input patch T,
the processed patch is denoted as T1. The selected anomaly
area is rectangular and masked in T1.

Procedure 2: Anomaly spectrum generation. To create
deviated spectra meeting the inequality (10), each pixel of
patch T is first randomly shuffled in the spectral dimension

to create T2. The shuffle operation remains consistent for
all the pixels within each patch. Since the shuffled T2 has
different spectral distribution with T1, the deviation inequality
P(xi ∈ T1 | T1) > P(xi ∈ T2 | T1) can be met. The pixels
in T2 can be considered as the anomalies given T1 as the
background. Next, cut anomaly pixels at the masked area in
T2 and paste them into T1 to obtain T3. This procedure aims
to generate deviated spectra from T, some other strategies in
addition to the spectral shuffle are also worked such as adding
the white noise (detailed in the analysis in Section IV-C).

Procedure 3: Anomalous region affine transformation.
Although T3 is already a trainable anomaly sample, the
anomalous regions in T3 are uniformly rectangular, which does
not correspond to the real-world situation where anomalies
have different shapes. For this reason, random affine trans-
formation is performed on T3 with its corresponding label
Y3 to give the anomaly shape information. The applied affine
transformation is a combined sequence of rotation, scaling,
and translation. For patch T3 and Y3, the affine transformation
process can be formulated as follows:

Tp = RT3 + b

Yp = RY3 + b (8)

where R is the transformation matrix and b is the translation
bias. The resulting (Tp, Yp) is the finally generated anomaly
sample.

Ideally, the generated label needs to have continuous score
representing the probability density as in (6). The scores
can be computed by modeling P(Tp) explicitly such as the
multivariate Gaussian distribution. Considering the certain
distribution may not fit the real scene well [32], we deal
with it in a simpler manner, where the labels Y3 and Yp

are generated as the binary map and convert the detection
problem as a binary classification problem. For the deep
classification model [52], the output value of the last Sigmoid
layer is positively correlated with the probability value [53].
The anomaly label is assigned to one for highlighting the
anomaly pixels at test stage.

The designed anomaly simulation strategy incorporates
strong anomaly location randomness, spectral randomness, and
shape randomness, based on the deviation ranking P(B | X) >

P(A | X) in the one-step paradigm. These properties force the
model to learn a “spectrally deviating” relationship rather than
a specific background or anomaly target.

C. Model Architecture

To output the anomaly score map directly, thus not relying
on any postprocessing steps and enabling direct optimization
of the HAD task, the proposed architecture is based on
the U-Net architecture with encoding and decoding parts
(as shown in Fig. 4) [54]. The encoder part contains six
cascaded feature extraction blocks for extracting multiscale,
multilevel features. The decoder part contains the decoding
blocks corresponding to the encoding blocks in turn. The
skip connection between the encoder and decoder parts helps
maintain the important spatial information.
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Fig. 4. TDD model architecture.

The main architectural innovation is the design of the GAM
and the LAM in the decoding part. Because we expect the
model to learn the deviating relationship between the anoma-
lies and background, rather than being dependent on a specific
background, the relationship modeling between pixels in the
input image is particularly important. Self-attention mecha-
nisms help with this as they model the correlation between
each pixel and the rest of the image pixels [55], avoiding the
problem of convolution failing to capture the long-distance
dependencies. The GAM calculates the correlation for all the
pixels, while the LAM calculates the correlation for pixels
in the local range. To reduce the computational burden and
suppress local noise, the decoder uses alternating global and
local perceptual attention modules. The designed self-attention
module can be plug-and-play, without changing the spatial size
and feature dimension of the original feature map.

1) Encoder: Six cascaded feature extraction blocks form
the encoder. Each extraction block consists mainly of several
convolutional layers and rectified linear unit (ReLU) activation
layers. In view of the small size of the hyperspectral anomaly
objects, the convolution kernel is set to 3 × 3 to prevent the
loss of anomaly targets during the network forward propa-
gation. Dilated convolution is used in the last block to keep
the large size of the feature maps, to avoid losing too many
spatial details [56]. As the network layer deepens, the spatial
dimension of the extracted feature cube continues to shrink
and the feature dimension gradually increases. Changes in the
spatial dimensions are implemented using dilation pooling,
and the feature dimension changes are implemented using
convolution. Finally, the encoder outputs six feature cubes,
named E1, E2, . . . , E6, in sequential order.

2) Decoder: The role of the decoder is to decode the
features obtained from the encoder into the final anomaly score
map. To make full use of the multilevel feature output from
the encoder and maintain important spatial details, the decoder
is designed as a symmetrical structure having six decoding
blocks. The output feature cubes are named D1, D2, . . . , D6 in
sequential order. Each decoding block can be thought of as a
function f in the following equation:

Di = g(Di−1, E7−i ). (9)

Each decoding block Di has two inputs: Di−1 from the
previous block and the feature cube E7−i corresponding to
the output of the encoder. D1 can be seen as a special case
where D0 is none. For the subsequent fusion between Di−1 and
E7−i , each Di−1 is first interpolated to reach the same spatial
dimension as E7−i . The fusion step of g can be divided into

Fig. 5. Global self-attention module.

three substeps, as shown in the following equation:

Di1 = Conv1×1(Concat(Di−1, E7−i )) (10)
Di = GAM/LAM(Di1). (11)

Equation (10) fuses Di−1 and E7−i in the channel dimension
using 1 × 1 convolution [57], which is a special type of
the convolution operation with the kernel size 1 × 1. It can
communicate the channel information and reduce the channel
dimension of the feature cube. We let the channel size of
Di−1 and E7−i be C . The convolution in (10) reduces the
concatenated feature block channel dimension from 2C to C .
Equation (11) then processes Di1 using the designed GAM or
LAM, which is elaborated below. The GAM and LAM do not
change the feature block size and can achieve a plug-and-play
effect. The last decoding block D6 outputs the anomaly score
map directly, without the GAM or LAM (i.e., Di = Di1).

Global Self-Attention Module. To make the model focus
on the “spectrally deviating” relationship between the anoma-
lies and background, we designed the GAM to explicitly
model the pixel correlation in the whole patch. The internal
architecture of the GAM is shown in Fig. 5. Inspired by
Dosovitskiy et al. [58] and Pu et al. [59], the query Qi and key
Ki are first generated for Di1 using 1 × 1 convolution. Due to
the large spectral dimension of the feature cube in the decoder,
the generated query and key values are split and thus used
in the computation of the multihead self-attention mechanism.
Correspondingly, the same split operation is performed for Di1.
Assuming that Qi , Ki , and Di1 are all divided into n segments
in the spectral dimension, each segment is named in turn as
Q j

i , K j
i , and D j

i1 (1 ≤ j ≤ n). For each combination (Q j
i , K j

i ,
D j

i1), the self-attention mechanism relies on scaled dot-product
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Fig. 6. Local self-attention module.

attention, as given in the following equation:

Attention
(

Q j
i , K j

i , D j
i1

)
= Softmax

Q j
i

(
K j

i

)T

√
d

k

D j
i1 (12)

where dk is the key dimension and Softmax((Q j
i (K

j
i )

T /d)k is
the obtained correlation map. To make the processed feature
cube have the same dimensionality as Di1, the n obtained
heads (Head j = Attention(Q j

i , K j
i , D j

i1), 1 ≤ j ≤ n) are
fused as shown in (13), where W is the linear mapping
parameter

Di2 = Concat(Head1, Head2, . . . , Headn)W. (13)

Di2 contains the fused global pixel correlation information.
Considering that Di2 may lose the information of the pixel
itself due to the introduction of other pixel features, Di2 and
Di1 are further fused using 1 × 1 convolution to obtain Di

in (14). Equation (14) uses the convolution to reduce the
concatenated feature dimension to be the same as that of Di1

Di = Conv1×1(Concat(Di1, Di2)). (14)

Local Self-Attention Module.Unlike the GAM, the LAM
only computes self-attention in local windows, which is more
computationally efficient. The LAM can be used as the
refinement of the GAM to better maintain local consistency
and eliminate the influence of noise on HAD. The internal
architecture of the LAM is shown in Fig. 6. We let the size of
the local window be Ĥ × Ŵ centered at feature xc. For the
centered xc, the local perception operation is used to extract
the corresponding feature cube Fc with the size Ĥ × Ŵ ×

C . The local correlation operation computes the correlation
value between xc and each remaining feature vector in Fc.
The obtained correlation map Mc has a size of Ĥ × Ŵ . For

computational efficiency, Mc is calculated using convolution
on Fc and the Softmax activation function. The processed
contextual feature x′

c is then the weighted average of Fc

according to Mc, as shown in the following equation:

x′

c =

Ĥ∑
h=1

Ŵ∑
w=1

Mhw
c Fhw

c (15)

where Fhw
c is the feature vector in Fc at spatial location (h, w).

The above process can be repeated efficiently for all the
features in Di1 by matrix operations, and then the contextual
cube Di2 is obtained. Similar to the GAM, the LAM has the
same fusion process as shown in (14), after which Di is finally
obtained.

D. Training Loss

The anomaly sample simulation process generates many
pairs of hyperspectral data and anomaly labels, which provide
a strong supervised signal for model training. To make full use
of the simulated labels, we add a 1 × 1 convolutional layer
and sigmoid activation layer on top of each Di to generate
anomaly maps M̂i , as shown in the following equation:

M̂i = Sigmoid(Conv1×1(Di )) (16)

The six generated M̂i have different spatial sizes, keeping
the same size as their corresponding Di . Finally, the ground
truth M is resized to the same size for each Di , denoted as Mi

with spatial size Hi × Wi , to optimize the model based on the
weighted average cross-entropy (CE) loss Lwce [60] between
the probability distribution P(M̂i ) and P(Mi )

Lwce = −

6∑
i=1

ωi

Hi∑
h=1

Wi∑
w=1

CE
(

P
(

M̂i

)
, P(Mi )

)
(17)

where ωi is the weight for the CE loss. The CE optimizes
the model to output the anomaly map distribution M̂i as
close to the ground-truth distribution Mi generating from the
simulating process (e.g., Yp in Fig. 3) as possible.

E. Model Transferability

Unlike the previous deep models that can only train and
reason on a single image, the proposed TDD model has the
ability to migrate between different images. In other words,
we only need to train once on a single image to infer on
many other unseen images. This is because the TDD model
is required to learn the “spectrally deviating” properties of
anomalies, rather than the specific background, as described
in detail in Sections III-A–III-C.

Despite this, there is still a remaining problem to be solved
when the TDD model infers between different data. The input
layer of the built network architecture requires a fixed number
of bands, but different numbers of bands for different data.
To solve this problem, we need to process the data in terms of
the channel dimensions, before inference. We let the number of
channels of the training data be B1 and the number of channels
of the test data be B2. If B2 < B1, bilinear interpolation of
the test data is performed in the spectral dimension to achieve
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Fig. 7. Experimental design for validating the transferability of TDD.
In contrast, the comparative models are trained on each dataset separately.

a spectral dimension of B1. If B2 > B1, the test data are cut
into many segments along the spectral dimension, where the
spectral dimension of each segment is B1. When the spectral
dimension of the last segment is less than B1, the B1 bands
of the last segment are taken from the end of the spectrum.
Finally, the mean of all the segment detection results is used
as the final output.

It is worth noting that the whole process does not abandon
any of the original bands. The above trick that is used to deal
with the varying image channels is simple but effective in
practice.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

1) Datasets: In the experiments, the proposed TDD model
was validated on six public datasets as shown in Table I.
Except for the five hyperspectral datasets, the multispectral
dataset MUCAD [61] is also used to validate the model exten-
sibility. The used MUCAD dataset consists of three scenes
with different camouflages (i.e., MUCAD-I, MUCAD-II, and
MUCAD-III).

To validate the transferability of TDD, we trained the TDD
model using the simulated anomaly samples from the
HYDICE dataset and then inferred the model on all the
datasets directly (as shown in Fig. 7). We chose the HYDICE
dataset as the training set because its background contains
more homogeneous categories, and tiny anomalies bring less
contamination to the simulated labels. Actually, any hyper-
spectral dataset can act as the training image to obtain a valid
model (discussed later).

2) Comparison Models and Evaluation Metrics: The TDD
model was compared with the following six models: the
global RX detector (GRX) [21], the low-rank and sparse
matrix decomposition-based Mahalanobis distance (LRASR)
method [62], the abundance and dictionary-based low-rank
decomposition (ADLR) [63] method, the collaborative-
representation-based (CRD) method [64], the Auto-AD based
on a fully convolutional AE (Auto-AD) [6], and the deep
low-rank prior-based method (DeepLR) [1]. The compar-
ison methods cover the three categories of RXD-based,
representation-based, and deep0learning-based methods, and
all of them are classic algorithms. Among the different meth-
ods, Auto-AD and DeepLR are the very recently proposed
state-of-the-art models.

TABLE I
INTRODUCTION OF SIX PUBLIC DATASETS

Eight metrics about the 3-D ROC curve are used to evaluate
the quantitative performance following Chang [65] and [66].
Compared with the single metric AUC(D,F), the other metrics
also consider the threshold dimension and can provide a
comprehensive evaluation. The larger value means the better
performance for all the metrics.

3) Implementation Details: We set the cluster number and
the selected pixels of LRASR to 15 and 20, respectively,
according to the original paper. The regularization parame-
ter of CRD was set to 10−0. The CRD model adopted a
dual-window strategy with the inner window size win and the
outer window size wout. (win, wout) were set to (7, 15) for
the HYDICE dataset and the WHU-Hi-River dataset, and (11,
17) for the remaining datasets. The threshold of DeepLR was
set to 0.00001 for the HYDICE dataset and 0.0001 for the
other datasets. The GAM and LAM were used alternately in
the decoder part of the TDD model. The training patches are
cropped under the overlap setting, where the overlap size is
set as the half of the patch size. For the first five decoding
blocks, the order of use was LAM-GAM-LAM-GAM-LAM.
ω1, ω2, and ω3 were set to 0.5. ω4, ω5, and ω6 were set to 1.0.
The CPU was an Intel1 Xeon1 CPU E5-2690 v4 at 2.60 GHz
with 62-GB memory, and the GPU was a Tesla P100-PCIE
with 16 GB of memory.

B. Model Comparison

The model comparison results are given in Tables II–V,
Figs. 8 and 9. The three scenes in MUCAD are separately eval-
uated. TDD has achieved the highest AUC(D,F) values under
six datasets. For the AVIRIS-2 and MUCAD-III datasets,
TDD surpassed the suboptimal models by 3 and 5 points,
respectively. Considering all the datasets and eight metrics
together, TDD has achieved 25 optimal metrics surpassing the
suboptimal model DeepLR by 15 metrics. Thus, TDD has the
best overall quantitative performance.

There are great differences among the comparative anomaly
maps in Fig. 8. Ideally, a good anomaly map needs to
be both anomaly-discriminative and background-suppressive.
However, the two conditions are difficult to meet simulta-
neously in practice. The map with higher anomaly pixel
responses always has higher false alarms (e.g., ADLR and
LRASR). Differently, Auto-AD and DeepLR have both low

1Registered trademark.
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Fig. 8. Qualitative comparison results on six public datasets.

Fig. 9. Separability maps on six public datasets.

responses for anomalies and background. The anomaly maps
of TDD have made a successful balance, where the anomalies
have discriminative values and the brining false alarms are
few.

The above results are consistent with the separating maps
in Fig. 9, where the larger margin between anomalies box and
background box means higher anomaly-background separating
degree. TDD is the only model where the anomalies box and
background box have obvious margin in all the six datasets
especially for the HYDICE and MUCAD-I datasets. Overall,
the instantiated one-step model (i.e., TDD) has surpassed the

current two-step deep detection methods in both quantitative
and qualitative results.

C. Model Analysis

In this section, we describe the ablation experiments about
the designed attention modules (LAM and GAM), different
training datasets, the anomaly generating strategy, the training
patch size, the inferring hyperparameters and execution time.

1) Ablation Analysis of LAM and GAM: Being plug-and-
play, LAM and GAM can be used in U-like architectures.
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TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE HYDICE AND WHU-HI-RIVER DATASETS

TABLE III
QUANTITATIVE COMPARISON RESULTS ON THE AVIRIS-1 AND CRI DATASETS

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON THE AVIRIS-2 AND MUCAD-I DATASETS

TABLE V
QUANTITATIVE COMPARISON RESULTS ON THE MUCAD-II AND MUCAD-III DATASETS

Table VI showed the related ablation results about whether to
use and how to use the modules. The model setting represents
the case of how the GAM (G for short) or LAM (L for short)
is used in the decoder. Compared with the case of no attention
module, both the GAM and LAM can significantly increase the
transferability of the TDD model in most cases (e.g., the Cri
dataset). It is worth noting that the “LLLLL” setting may cause
some failed detections (AUC(D,F) < 0.5) while “GGGGG”
does not. This may be caused by the patch input form, where
the model input is already a local area, and thus the global

attention is more necessary. Compared with using only one
kind of attention mechanism (i.e., the case of only the GAM
or LAM), the alternating use of the LAM and GAM can further
improve the detection ability lightly.

2) Sensitivity Analysis of Different Training Datasets: The
TDD model in model comparison section is trained on the
HYDICE dataset. Actually, the transferability can be observed
under different training datasets. To clarify this, we use dif-
ferent training datasets and observe the model performance.
Table VII lists the related results. Since the MUCAD dataset
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TABLE VI
ABLATION EXPERIMENTS ABOUT THE ATTENTION MODULES IN THE DECODER (AUC(D,F) /AUCOADP)

TABLE VII
ABLATION EXPERIMENTS ABOUT THE DIFFERENT TRAINING DATASETS (AUC(D,F) /AUCOADP)

TABLE VIII
COMPARATIVE ANALYSIS OF THE STRATEGIES FOR GENERATING THE ANOMALY PIXELS (AUC(D,F) /AUCOADP)

TABLE IX
SENSITIVITY ANALYSIS OF PATCH SIZE OF THE SIMULATED SAMPLES TO THE DETECTION RESULTS (AUC(D,F) /AUCOADP)

only has six bands, the corresponding trained TDD model
is difficult to exploit the spectral features, and we only
showed the HSI datasets. The trained TDDs on five HSI
datasets have all demonstrated the detection transferability
(many AUC(D,F) > 0.9). The optical results can be observed
across different training images. If training and inferring the
TDD model on a single dataset, higher AUC(D,F) scores can be
achieved for many datasets (0.9914 on the AVIRIS-1 dataset,
0.9997 on the Cri dataset, 0.9566 on the AVIRIS-2 dataset,
etc.).

On the other hand, the transfer suffers from instability issue
and the instability degree varies according to the training
datasets. The HYDICE dataset shows the robust detection
transferability. We speculate that the instability may be related
to the heterogeneity of background spectral and the noise
degree brought by the real anomalies. If the background
spectral only has few categories, the trained discriminative
ability for deviation relationship is relatively weak (e.g.,
WHU-Hi-River dataset).

3) Sensitivity Analysis of Anomaly Generating Strategies:
The proposed anomaly simulation strategy uses the channel
shuffling operation to create the deviated spectra. In practice,
we found adding random white noise was also useful. Their

small difference is that the channel shuffle does not create
new radiance/reflectance values, whereas adding random noise
does. In Table VIII, we have compared the spectral shuffle
with the Gaussian white noise and the random white noise
at the same amplitude range. It is difficult to judge which
one is better or worse in terms of an overall assessment.
Adding white noise strategy has also refreshed the optimal
accuracy on many datasets. From the view of the experimental
performance, their difference can be ignored and both the
strategies can generate the effective samples.

4) Sensitivity Analysis of Training Patch Sizes: The pro-
posed anomaly simulation strategy has cropped the training
image into patches for generating lots of the paired samples,
where the training patch size is an adjusted hyperparameter.
The related analysis is shown in Table IX. The simulated
samples are all generated from the HYDICE dataset. When
the patch size is set to 5, the performance of the trained
model will decrease significantly, especially for the HYDICE,
AVIRIS-1, and Cri datasets. For the patch sizes 10, 20, and
30, they have similar performance and all reached at a high
level. We deduce that the too small patch size would lead
to smooth and single background spectra, inconsistent with
the spectral heterogeneity in real scenes. When the patch
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TABLE X
SENSITIVITY ANALYSIS OF SIMULATED ANOMALY SIZE ON THE DETECTION RESULTS (AUC(D,F) /AUCOADP)

size grows to the limit of 80, satisfactory results can be still
obtained. It benefits from the incorporating randomness (strong
anomaly location randomness, spectral randomness, and shape
randomness), which can help generate varying samples even
only several original images are available. Overall, the model
is robust to the training patch size except for the very small
patch size (e.g., patch size 5 in the HYDICE dataset).

5) Sensitivity Analysis of Simulated Anomaly Size: The size
of the simulated anomaly is an important hyperparameter
for the deviation relationship learning. When training TDD,
the simulated anomaly size is randomly selected from a
preset range. We set the size range from the following two
considerations.

1) Smaller than the half the training patch size. Since we
treat the training patch as the surroundings and generate the
anomalies deviating from it. The dominant area should be
background and the anomaly size cannot be more than half
of the patch size.

2) Simulated size cannot be too small. The training process
of TDD is to learn to discriminate the deviation relationship.
The too small size would bring relatively few supervisions
compared with the background, increasing the risk of the
model overfitting the background.

To make the effect of anomaly size clear, we have conducted
related sensitivity analysis on the HYDICE dataset. Four
different size ranges are set as (δ − 3, δ + 3), where δ is
set as 5, 10, 15, and 20, respectively. For each size range,
we fixed the patch size 30 × 30 according to Table IX and
randomly chose the anomaly height and width from this range.

The results are shown in Table X. Each setting of the
anomaly size can train a valid transferring model but has an
obviously different effect for the detection results. The size
range (2, 8) has many worst detections such as the HYDICE
(AUC(D,F) 0.7972) and WHU-Hi-River datasets (AUC(D,F)

0.9014). When the anomaly size increases from 7 to 17, the
overall performance decreases obviously. The size range (17,
23) has totally exceeded half of the patch size (i.e., 15) and a
large drop appears in many datasets (e.g., HYDICE, AVIRIS-I,
and Cri). The size range (7, 13) has achieved the overall best
performance and validated our two considerations.

Note that although the simulated size in the training process
is not too small, once the trained model has learned to
recognize the deviation relationship between anomalies and
background, it can be generalized to tiny anomalies success-
fully (e.g., many anomalies in the HYDICE dataset only has
1–2 pixels and the trained model can detect them correctly).

6) Sensitivity Analysis of Infer Hyperparameters: Since
TDD can infer the test image without retraining as the tradi-
tional two-step methods, there are no training hyperparameters

Fig. 10. Sensitivity analysis of AUC(D,F) (a) and AUCOADP (b) on the infer
size.

needed to be adjusted. This is very friendly considering the
great impact of training hyperparameters on the detection
results of the two-step methods. Despite this, TDD has two
hyperparameters at the infer stage including the infer size and
the overlap setting. Given a test image, the TDD model infers
the whole image patch by patch. The infer size decides the
context area to define the anomaly and the overlap decides
whether to keep the marginal results. To figure out the sensi-
tivity of TDD on these infer hyperparameters, we varied the
hyperparameters and analyzed the resulting accuracy change.

Fig. 10 and Table XI show the sensitivity results about the
infer size and the overlap setting, respectively. There are huge
differences in the image size of different datasets, and the
horizontal axis in Fig. 10 represents the ratio of patch to the
entire image. It can be clearly seen that most of the lines
are nearly flat and there is no significant performance drop.
In Table XI, we found using the overlap setting can bring a
slight and robust promotion for both the metrics. Using the
overlap setting can be considered as the optimal and default
infer hyperparameter without adjusting. The results in center
area are always with high confidence and accuracy. Although
the overlap may increase the amount of processed data, the
resulting time increasing is slightly under GPU acceleration.
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TABLE XI
SENSITIVITY ANALYSIS OF USING THE OVERLAP

SETTING (AUC(D,F) /AUCOADP)

TABLE XII
EXECUTION TIME COMPARISON

Overall, TDD only has one infer hyperparameter (i.e., infer
size) actually, and TDD is very insensitive to it.

7) Execution Time: One of the advantages of the one-step
paradigm is the execution efficiency because the training
time is removed. The one-step paradigm is more practical
in many real-time anomaly applications, where the captured
image can be processed directly. The execution times are
recorded in Table XII. Compared with the SOTA two-step
paradigm methods Auto-AD and DeepLR, TDD can reduce the
processing time by an order of magnitude on most datasets.
For example, the processing time on the AVIRIS-1 dataset
was reduced from 159.59 to 1.91. A larger reduction can
be observed compared with the representation-based methods
(i.e., LRASR, ADLR, and CRD). GRX is the only model faster
than TDD. It is a matter of balance between the time extension
and accuracy improvement of TDD compared with GRX.
Compared with the remaining comparison methods, TDD is
better in both accuracy and time.

V. CONCLUSION

In this article, we propose and instantiate the one-step
detecting paradigm for HAD task. Compared with the main-
stream two-step paradigm, “spectral deviating relationship” is
focused and there are two main advantages: 1) no proxy task
is adopted (e.g., reconstructed or generated) and the model
is optimized directly for the HAD task and 2) the model of
one-step paradigm has the transfer ability. Given an unseen
image, it can be inferred directly without retraining. This is
practical especially for the real-time applications.

Furthermore, TDD is designed as a paradigm instantiation,
where the proposed anomaly sample simulation strategy drives

the unsupervised model training, and two plug-and-play atten-
tion modules are designed to enhance the relationship learning.
Under six public datasets, TDD has demonstrated the superior
detection and transfer ability of the one-step paradigm. In the
model analysis section, we also found the transfer ability of
TDD is bounded, which may be limited by the used training
samples. With the development of the large foundation model
and datasets, we hope this research can facilitate more robust
instantiation of one-step paradigm.
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