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Abstract— Remote sensing anomaly detector can find the
objects deviating from the background as potential targets for
Earth monitoring. Given the diversity in earth anomaly types,
designing a transferring model with cross-modality detection
ability should be cost-effective and flexible to new earth observa-
tion sources and anomaly types. However, the current anomaly
detectors aim to learn the certain background distribution, the
trained model cannot be transferred to unseen images. Inspired
by the fact that the deviation metric for score ranking is
consistent and independent from the image distribution, this
study exploits the learning target conversion from the vary-
ing background distribution to the consistent deviation metric.
We theoretically prove that the large-margin condition in labeled
samples ensures the transferring ability of learned deviation
metric. To satisfy this condition, two large margin losses for
pixel-level and feature-level deviation ranking are proposed
respectively. Since the real anomalies are difficult to acquire,
anomaly simulation strategies are designed to compute the model
loss. With the large-margin learning for deviation metric, the
trained model achieves cross-modality detection ability in five
modalities—hyperspectral, visible light, synthetic aperture radar
(SAR), infrared and low-light—in zero-shot manner.

Index Terms— Anomaly detection, remote sensing, transfer-
ability, cross-modality, cross-scene, unified detector.

I. INTRODUCTION

REMOTE sensing images can be used to monitor anoma-
lies on the Earth’s surface in a large-scale and consistent

space [1]. Anomaly detection in remote sensing (ADRS)
task aims to find the pixels deviating from the back-
ground spectrally or spatially, which are detected without
any prior knowledge [2], [3], [4]. The anomalies vary in
category and electromagnetic response. For example, land-
slide anomalies exhibit a response in the visible and radar
range, while fire anomalies are mainly related to the thermal
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Fig. 1. The cross-modality detection paradigm of proposed model. Given
the modalities with different imaging mechanisms and huge distribution
difference, traditional models need to be trained for each modality while
proposed model can infer the unseen modalities directly with zero-shot
transferring ability.

infrared spectra [5]. Given the diversity in anomaly types
and responses across modalities, building a transferring model
with cross-modality detection ability for ADRS (as Fig. 1)
to different modalities would be cost-effective and allow easy
adaptation to new data sources and anomaly types.

Designing a such transferring model is challenging due to
the difference in imaging mechanisms of different modalities.
Specifically, the hyperspectral modality can record a contin-
uous spectrum from visible to short-wave infrared [6], and
thus the acquired imagery always has hundreds of channels
for precise recognition [7], [8]. In contrast, the synthetic
aperture radar (SAR) modality is a side-looking radar that
records the received echoes coherently [9], [10], providing
more structural information with several channels. Besides,
large-scale scenes encompass diverse backgrounds, including
forests, urban areas, and oceans, with highly variable distribu-
tions [11], [12].

Since the huge distribution difference, most anomaly detec-
tors are still limited to a single modality since they aim to learn
the certain background distribution for each image. They focus
on describing the background distribution with a statistical-
based [13], [14], [15], [16], representation-based [17], [18],
[19], [20], or deep learning based method [21], [22], [23],
[24] first, and then use some deviation metric directly to obtain
the anomaly score. The statistics-based methods describe the
background distribution with some statistical model (e.g.,
multivariate Gaussian distribution) [13]. The representation-
based methods describe the background with a hand-crafted
dictionary considering the low-rank and sparsity priors [2],
[25]. The deep learning based models mostly use recon-
struction models to learn the background distribution and
assume that the normal pixels have a smaller reconstruc-
tion error than the anomaly ones [26], [27], [28]. After
obtaining the background distribution, some deviation met-
ric such as the Mahalanobis distance [15] and the mean
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squared error [29] is used directly to obtain the anomaly
score. However, the background distribution always varies in
unseen images and thus the prior constructed detector for
certain background is not applicable any more. This is the
main reason why the existing models need to be constructed
again for each image and lack the cross-modality transferring
ability.

To solve the transferring problem, finding an
image-independent learning target is the core step. We observe
that although the modality and scene have changed, most
detectors use fixed deviation metrics (e.g., Mahalanobis
distance) [15], [30] to compute the anomaly score. The
learned background distribution act as the varying input
for the deviation metric while the deviation metric itself
is unchanged and image-independent. Inspired by this,
we exploit to learn the deviation metric directly, which
accepts the original image as input and ranks the deviation
degree for each pixel. Different from the hand-crafted metrics,
our score process is end-to-end without the need to obtain
the background distribution first.

In this study, we build a cross-modality detector by learning
an image-independent deviation metric. Instantiating the devi-
ation metric as a learned deep model, we first theoretically
prove that although the cross-modality images may be unseen
at training stage, once the trained model can meet the large
margin condition in the limited training samples, it can also
rank the unseen anomaly and background correctly. Based
on the proved Theorem, two large-margin deviation ranking
losses are further proposed at pixel-level and feature-level. The
pixel-level loss is derived from the common ranking metric
(Area Under the Curve) AUC, and thus has a smaller gap
between the optimization and the evaluation. The feature-level
loss is designed to optimize the ranking of features with the
hypersphere centers. Both the pixel-level and feature-level
losses punish the small margin even for the correct ranking.
Since the real anomalies are difficult to acquire, the anomaly
simulation strategy is proposed to generate labeled anomalies
and compute the large-margin losses.

In brief, the main contributions of this paper can be sum-
marized as follows.

(1) The anomaly detection model with cross-modality trans-
ferring ability is built by converting the learning tar-
get from the certain background distribution to the
image-independent deviation metric.

(2) We theoretically prove that meeting the large margin
condition in training samples can guarantee the correct
deviation rank for unseen anomaly and background.

(3) The large-margin ranking losses at pixel-level and feature-
level are designed. The losses work together with
simulated samples and punish the small margin even for
the correct ranking.

The rest of this paper is organized as follows. Section II
introduces the related work in remote sensing anomaly
detection. Section III provides a detailed description of the
motivation and the learning method of deviation metric.
Section IV gives the experimental results and analysis. Finally,
the paper is concluded in Section V. The data and code are
available at http://rsidea.whu.edu.cn/deviation_AD.htm.

II. RELATED WORK

A. Anomaly Detection Task in Remote Sensing

ADRS involves finding the objects that are anomalous to
the background, without any prior information [31]. There
is not an unambiguous way to define an anomaly, which is
generally identified as an observation deviating from the back-
ground, spectrally or spatially [2], [4]. In fact, the category
of the anomalies depends on the particular application. The
anomalies can be the camouflage [43] or vehicles in military
surveillance [32], rare minerals in geological detection [33],
infected trees in forestry [30], and ships on the sea [33].
Since the ADRS methods do not use any prior knowledge,
they cannot distinguish between real anomalies and detections
that are not of interest. The detection result is often a first
step, which provides the potential targets for the subsequent
recognition [34].

Some fields may seem similar to the ADRS methods, but
there are significant differences. Anomaly detection in medical
or industrial images finds the anomaly pattern given a set of
normal samples [35], where the normal pattern is no longer
the background defined in the ADRS. The detected anomalies
have both large and small areas. Despite some researchers
having defined the normal pattern as the same as the industrial
one in high-resolution optical images [30], we inherit te
classical anomaly definition in the remote sensing community
and treat the background as the normal pattern in each scene.
Compared to tiny object detection [36], [37], the ADRS task
is unsupervised without preset categories and labeled training
samples. In addition, the anomalies in an ADRS are always
small and rare, while tiny object detection also considers
abundant small objects (e.g., cars in a parking lot).

B. Anomaly Detection Methods in Remote Sensing

Since the difficulty to acquire the real anomalies, most
ADRS methods aim to extract the discriminative background
features first and then use a distance metric to assign the
anomaly score for each pixel. According to the principles
of background learning, the detection models can be divided
into three categories: statistical-based [13], [14], [15], [16],
[38], [39] models, representation-based [17], [18], [19], [20]
models, and deep learning based method [21], [22], [23], [24],
[40], [41].

1) Statistics-Based Models: This statistical models aim to
describe the background distribution with statistical tech-
niques [14], where the likelihood implies the anomaly degree.
For example, the classic Reed-Xiaoli (RX) detector models the
background as a multivariate Gaussian distribution [15]. The
Mahalanobis distance between the test pixel and the modeled
distribution is then treated as the anomaly degree. Inspired
by the RX detector, many improved variants have been pro-
posed, such as the kernel RX-AD [16], weighted-RX-AD and
linear filter-based RX-AD [42] and spectral-spatial feature
extraction-based AD [43]. Recently, Chang proposed [44],
[45] a target-to-anomaly conversion mechanism, which con-
verts many well-known target detectors to the corresponding
anomaly versions. Except for the accuracy improvement, some
researchers have focused on real-time processing with RX
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detectors [38], [46], [47]. To address the difficulty of determin-
ing the distribution form, statistical cluster centers and decision
hyperspheres have also been deployed [48], [49]. For the SAR
modality, Haitman et al. [50] used both the RX detector and the
non-negative matrix factorization (NNMF) learning algorithm
to detect the sludge pools in Israel. Despite the statistical
methods having a clear mathematical basis, the constructed
distribution is only suitable for single images [27] and does
not have the ability to be cross-modal or cross-scene.

2) Representation-Based Models: The representation-
based models construct the detector considering the prior
properties of the anomalies or background [17], [51],
and include sparsity, collaborative, and low-rank based
detectors. Ling et al. [18] constructed a sparsity-based
detector with the sum-to-one and non-negativity constraints,
making the detector less sensitive to the anomalies. Differing
from sparse representation, collaborative representation
assumes that the background pixels can be reconstructed
by the surrounding pixels while the anomalies cannot [19].
The classic collaborative representation detector (CRD)
follows this assumption [20]. To make full use of the
global structural information (i.e., low-rank property), the
low-rank and sparse matrix decomposition model (LSDM)
was designed by decomposing the hyperspectral image
into a low-rank background and sparse anomalies [17].
Sun et al. [52] implemented the LSDM technique with robust
principal component analysis (RPCA) [53]. Zhang et al. [54]
proposed a detector based on the low-rank and sparse
matrix decomposition (LRaSMD) technique and applied
the Mahalanobis distance to estimate the background part
(LSMAD). Xu et al. [55] first introduced the background
dictionary and proposed a detector based on low-rank and
sparse representation (LRASR). Although the representation
models do not rely on specific statistical distribution, the
used background dictionary needs to be constructed for each
modality and scene, limiting the transferring ability.

3) Deep Learning Based Models: Most deep learning based
models follow a two-step paradigm [27], [56], where they
assume that the normal pixels have a smaller reconstruction
error with the deep model than the anomaly ones. Li et al. [40]
first introduced a convolutional neural network (CNN) into the
hyperspectral anomaly detection (HAD) task in a supervised
way. To detect anomalies according to a practical situation,
some unsupervised methods have been proposed. For example,
Xie et al. [23] proposed the spectral constrained adversarial
autoencoder (SC_AAE), where a spectral constraint strategy
is incorporated for better latent representation. However, these
methods always involve complicated manual parameter set-
ting and preprocessing steps. To this end, Wang et al. [29]
proposed the autonomous hyperspectral anomaly detection
network (Auto-AD) with an adaptive-weighted loss function,
where a high reconstruction error implies anomaly. Except for
the autoencoder model, generative adversarial network (GAN)-
based models have also been used, where the generation
error from real images is treated as the anomaly degree [57],
[58], [59]. For example, Jiang et al. [59] introduced a
semi-supervised GAN with dual RX detector to learn the
discriminative reconstruction of background and anomalies.
Inspired by the fact that both the autoencoder-based models
and GAN-based models adopt the reconstruction proxy task

and need to be trained for each image, Li et al. [27] proposed
the one-step detection paradigm and transferred direct detec-
tion (TDD) model, where the proxy task is abandoned and the
trained model can be transferred to unseen images directly.
However, the TDD model is still limited in the hyperspectral
modality due to the proxy classification optimization and the
simulated spectral anomalies.

4) Fast Anomaly Detection: Since anomalies may appear
in a short time and bring huge losses, many efforts have
been made to improve the detection speed. Chen et al. [38]
designed causal processing with Kalman filters and achieved
real-time performance. To better conform to the push-broom
scanners, Díaz et al. [60] proposed a line-by-line anomaly
detector (LbL-FAD), which used hardware-friendly alternative
to compute the orthogonal subspace spanned by selected
background pixels to make the anomalies easily separated.
López-Fandiño et al. [61] designed a parallel algorithm to be
executed on multi-node heterogeneous computing platforms
based on Reed–Xiaoli (RX) [15]. A et al. [62] proposed a fast
local RX (FLRX) detector to achieve near-time performance.
It can be seen that most fast detectors are based on statistical
models to achieve real-time performance. Although prior work
has used field programmable gate array (FPGA) to speed up
the deep anomaly detectors for multispectral imagery [63],
their transferability is still limited in known scenes due to
the learning target of certain background. In hyperspectral
community, the paradigm of training and testing on each image
prevents the deep model from being real-time. This study
tackles the problem by transforming the learning target from
varying background to fixed deviation ranking, eliminating the
training time for fast processing on unseen images.

III. A TRANSFERRING MODEL FOR REMOTE SENSING
ANOMALY DETECTION

In this section, we first formulate the ADRS task and
clarify the motivation in Section III-A, where our main idea
is to change the learning target from the varying image
distribution to the image-independent deviation metric (Fig. 2).
The analysis in Section III-B shows that satisfying the large
margin condition in the labeled samples is the key for the
transferring ability of learned deviation metric. To satisfy the
condition, two large-margin losses are proposed in pixel-level
and feature-level respectively for the correct deviation ranking
in Section III-C. Since real anomalies are difficult to acquire,
we design the anomaly simulating strategies in Section III-D
for computing the deviation ranking loss. Fig. 3 gives an
overview of the built transferring model.

A. Motivation: From Single to Cross-Modality Detection
Given a remote sensing image X ∈ RH×W×C , X = B + A

in the ideal condition without noise, where B is the back-
ground and A is the anomaly component. In ADRS task,
A is always the small target with the empirical ratio in
range [0.0019%, 0.48%] obtained by statistics of 12 well-
known datasets from [29], [55], [64], [65], [66], [67], [68],
[69], [70].

Regardless of the instantiation difference, current detec-
tion models rely on both the image distribution P(X) and
the deviation metric function S, which measures the scalar
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Fig. 2. Description of our main principle difference compared to traditional
models. Traditional models focus on learning the certain image distribution
first and then use some existing deviating metric to rank the anomaly score.
In different modalities, since the distributions of background and anomaly
are varying, the prior learned model cannot be transferred to unseen image
distribution. Inspired by the fact that the deviating metric S is independent
and consistent for all the modality image, proposed model aims to bypass the
image distribution learning and learn the deviating metric directly, achieving
the cross-modality detection.

deviation degree of the pixel x ∈ X and the P(X). The
deviation degree for each pixel reflects its occurrence prob-
ability and the distribution difference with the whole image.
Ideally, any anomaly pixel a ∈ A and any background pixel
b ∈ B should satisfy the ranking inequality S(a, P(X)) ≥

S(b, P(X)), implying the higher deviation and anomaly score
of A than B. For example, RXD instantiates the P(X) as the
multivariate Gaussian distribution and instantiates the S as
the Mahalanobis distance [15]. LRASR [55] instantiates the
P(X) as a background dictionary and instantiates the S as the
reconstruction error.

We observe that most models only concern about the quality
of P(X) and use some existing distance metric directly to
get the final anomaly map (e.g., Mahalanobis distance). They
mainly differ in the methods of representing P(X) (statistical-
based, representation-based or deep learning-based). However,
when P(X) has changed given an unseen image of different
modality, the model needs to be rebuilt or trained, lacking the
transferring detection ability.

To solve the transferring problem and increase the flexibility
of the detection model, our main idea is to abandon the
learning target of P(X) but learn the deviation metric S
directly. Since S is independent of the X, the learned S can
be consistent given any unseen image, thus achieving the
cross-modality transferring detection.

B. Learning Deviation Metric for Correct Ranking

We made S learnable by instantiating it as a trained deep
model. The expected S can score the deviation degree for each
pixel and satisfy the ranking inequality S(a, X) ≥ S(b, X).
Different from the traditional deviation metric such as the
Mahalanobis distance, our S does not need to obtain the P(X)

first. Fig. 2 shows our main difference compared to the
traditional models. For simplicity, unless otherwise specified,

S(a, X) is shortened to S(a) and S(b, X) is shortened to S(b)

in the following paragraphs.
To answer the question of “ how to ensure the learned

deviation ranking ability of S transferring?”. In this section,
we theoretically prove that the transferring ability of S can be
achieved once meeting the large margin condition in limited
labeled samples (statement is provided in Theorem 1).

Theorem 1: Set Ql be the training set of many labeled
samples (the anomaly pixel a j ∈ RC indexed by j , the
background pixel bi ∈ RC indexed by i). Set δ be the smallest
radius, such that for any unseen anomaly pixel ua or the
unseen background pixel ub, ua is in the δ-ball of some
a j in Ql and ub is in the δ-ball of some bi in Ql . If the
score function S meets the λs-Lipschitz continuous condition
and has correctly ranked the Ql with a large margin, i.e.,
S(a j ) − S(bi ) ≥ 2δλs holds for all the labeled pixels, then S
can also rank the unseen pixels of different modality correctly,
i.e., S(ua) ≥ S(ub).

Proof: Considering the λs-Lipschitz continuous property
of S and the ua and ub are assumed to be close to a j and bi
respectively with the distance smaller than δ. Eq. (1) and Eq.
(2) can be obtained.

S(a j ) − δλs ≤ S(ua) (1)
−S(bi ) − δλs ≤ −S(ub) (2)

Adding the inequalities (1) and (2), and with the condition
S(a j ) − S(bi ) ≥ 2δλs , we can further obtain the Eq. (3).
Thus, S(ua) ≥ S(ub) can hold.

0 ≤ S(a j ) − S(bi ) − 2δλs ≤ S(ua) − S(ub) (3)

Theorem 1. shows that if the learned S satisfies the Lipschitz
continuous condition and the large margin condition in labeled
samples of Ql , it can also rank the unseen anomalies and
background correctly and thus achieve the transferring ability.
Lipschitz continuous is a common condition and controlled by
the regularization strength of the deep model. Thus, meeting
the large margin condition in labeled samples is the key for
guaranteeing the transferring ability.

For the deviation metric learning of ADRS, we meet the
large margin condition in both pixel-level and feature-level
optimization. The pixel-level loss is optimized directly for
the deviation ranking metric (i.e., AUC), where the discrete
zero-one loss is replaced with the designed differentiable log
loss. Even a correct ranking has been obtained, the penalty
exists and changes according to the margin. The feature-level
loss optimizes the deviation ranking of extracted features in an
equivalent way, which enlarges the distance of the hypersphere
centers between the anomaly and background features while
decreasing their hypersphere radiuses at the same time. Both
pixel-level and feature-level losses work together to strength
the large margin ranking learning.

Besides, since ADRS task is unsupervised without real
anomalies, we propose an anomaly generating strategy to
generate the paired labeled samples by simulating the deviation
ranking relationship. The simulated samples convert ADRS
from the unsupervised learning setting into the pseudo super-
vised setting, which are used to compute the pixel-level and
feature-level ranking margin losses.

Optimized with the large margin losses (Section III-C) and
the simulated anomaly samples (detailed in Section III-D),
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Fig. 3. The built transferring detection model with learning the deviation metric for correct ranking. According to the proven Therorem1, meeting the
large-margin condition in labeled samples is the key to ensure the transferring ability of the learned deviation metric. To learn the large margin ranking,
we design the pixel-level and feature-level optimization, respectively. Optimization at pixel-level (c) optimize the ranking metric AUC directly, where the
discrete zero-one loss is replaced by the designed surrogate loss to be differentiable and large margin (Section III-C). Optimization at feature-level (b) aims
to enlarge the ranking margin of features, which decreases the hypersphere radiuses enclosing the anomaly and background features and also increases their
center distance (Section III-C). Besides, since the real anomalies are difficult to acquire, we simulate both spectral and spatial anomalies (a) to compute the
large-margin losses.

a transferring model for ADRS task can be built as in Fig. 3,
which can be trained only once and transferred to unseen
images of different modality directly.

C. Large-Margin Ranking Losses

Traditional ranking learning adopts proxy losses (e.g., cross
entropy loss for the classification task [71]) or the discriminate
ranking losses (e.g., the average precision (AP) loss) [72].
To be more consistent with the common ranking metric,
we derive the pixel-level large-margin loss from the AUC
directly and also design the feature-level loss to strengthen
the large margin ranking learning.

1) Pixel-Level Ranking Loss: We derive the loss from the
AUC metric to keep the optimization process and the ranking
evaluation consistent. AUC measures the probability of that
a ∈ A will rank higher than b ∈ B and can be written in the
integral form as in Eqs. (4) and (5),

AUC = P(S(a) ≥ S(b)) =

1∫
0

TPR@FPRη(S)dη (4)

TPR@FPRη(S) = max TPR(S, t) s.t. FPR(S, t) ≤ η (5)

where TPR is the true positive rate and the FPR is the false
positive rate. The anomaly is considered as the positive class
while the background is negative. The changing false alarm
rate η is decided by the corresponding threshold t , which
transforms the continuous anomaly map into a binary map.
The TPR and FPR can be expressed with the zero-one loss
L01 (i.e., 0 for correct prediction and 1 for wrong prediction)
as in Eqs. (6) and (7).

TPR(S, t) =

∑
a∈A

1 − L01(S(a), t)

|A|
(6)

FPR(S, t) =

∑
b∈B

1 − L01(S(b), t)

|B|
(7)

For the large-margin optimization, the sigmoid loss or the
p-order hinge loss [73] can be used as the surrogate loss
to make the discreate L01 differentiable. However, they
always need the another hyperparameter to control the margin.
To tackle this, we choose to achieve the margin optimization
with the help of log curve rather than the hyperparameter. The
proposed surrogate loss L(x, t) for L01 is defined in Eq. (8),
which covers the four situations.

L(x, t) =



− log(S(x)) if x ∈ A and S(x) ≥ t
log(S(x))

log(t)
if x ∈ A and S(x) < t

− log(1 − S(x)) if x ∈ B and S(x) < t
log(1 − S(x))

log(t)
if x ∈ B and S(x) ≥ t

(8)

For the first and third situations, although the model has
already scored A and B correctly given the threshold t
(i.e., S(a) ≥ t or S(b) < t), the loss exists and encourages
the larger score margin. The smaller margin implies larger
loss and the correlation is controlled by the log curve. If the
model has given a wrong score ranking, the corresponding loss
relies on both the score value and the degree of the threshold
t . For example, when the t is very large near one, a lot of
anomaly pixels would be classified wrongly as the background,
resulting a large and unreasonable loss. To deal with this
problem, we multiply the loss with a factor 1/ log(t), which
gives less weight to unreasonable thresholds. Replacing the
L01 in Eqs. (6) and (7) with L(x, t), we can get the surrogate
ones denoted as TPR(S, t) and FPR(S, t) respectively as in
Eq. (9).

TPR@FPRη(S) = max TPR(S, t) s.t. FPR(S, t) ≤ η (9)
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TABLE I
THE DETAILED ARCHITECTURE AND FEATURE SHAPE OF SPATIAL AND

SPECTRAL STEMS. THE CONVOLUTIONAL LAYER IS REPRESENTED
AS CONV (INPUT CHANNEL, OUTPUT CHANNEL, KERNEL SIZE,

STRIDE, PADDING) AND BN REPRESENTS THE BATCH
NORMALIZATION

Theorem 2: The surrogate TPR@FPRη(S) is a lower bound
for the original TPR@FPRη(S).

Proof: Considering Eqs. (6) and (8), L01(S(x) ≥ t) is 0 but
0 ≤ L(x, t) < 1 when x ∈ A and S(x) ≥ t . L01(S(x) ≥

t) is 1 but L(x, t) > 1 when x ∈ A and S(x) < t . Thus,
TPR(S, t) with the L is the lower bound of the TPR(S, t) with
the L01. Similarly, FPR(S, t) is the upper bound of the original
FPR(S, t) considering Eqs. (7) and (8) together. Therefore,
TPR(S, t) ≤ TPR(S, t) and FPR(S, t) ≥ FPR(S, t), and the
Theorem is proved.

Theorem 2 proves the surrogate rationality of the designed
differentiable large-margin L(x, t) for the discreate L01. After
replacing the TPR@FPRη(S) in Eq. (4) with TPR@FPRη(S),
we can use the Lagrange multiplier λ to deal with the
constraint of FPR(S, t) and then approximate the integral in
with a discrete sum over the anchor values.

The final obtained large-margin ranking loss at pixel-level
L p is given in Eq. (10), where k anchors exist in the range [0,
1], with each anchor corresponding to the false alarm rate ηi ,
threshold ti , and multiplier 1i . 1i = ηi −ηi−1 for ∀ i =1. . . k.

L p = min
S,t1,...,tk

max
λ1,...,λk

k∑
i=1

1i (1 − TPR(S, ti ))

+ λi (FPR(S, ti ) − ηi |A|) (10)

2) Feature-Level Ranking Loss: Since the remote sensing
anomalies are always tiny objects, the high-resolution features
are essential for preventing the loss of details. As in Fig. 3(b),
two separate stems are designed to process the spectral and
spatial anomalies respectively first. Both stems consist of two
cascaded convolution layers, where spectral stem uses kernel
size 1 × 1 covering spectral dimension only and spatial stem
uses 3 × 3 covering both spatial and spectral dimensions. All
the images are interpolated to the same shape for the stem
processing and Table I shows the detailed internal workflow
(detailed setting of input shape is described in Section IV-A.3).
The output high resolution features are then processed by
multi-scale blocks (as in Fig. 4), where a maximum down-
sampling rate of 8× is set to filter out small anomaly objects.
Concatenating the output context features with the previous
high-resolution ones from stems, fused F ∈ RH×W×L can
be obtained, which provides both pixel-level and context-level
information for each object and helps computing the deviation
score with convolutional head.

To strengthen the large-margin ranking, our feature-level
optimization is conducted on the multi-scale fused features F ∈

Fig. 4. The detailed architecture of multi-scale encoding process in Fig. 3(b).
The usage feature color and size are consistent with Fig. 3(b). Conv-2
represents two cascaded convolution layers, and 64d represents that the
channel number of corresponding feature cube is 64. The output fusing
features F have the same spatial resolution (H × W ) with input image and is
used to compute the high-resolution deviation score map in the convolutional
head.

RH×W×L with the original image spatial size H × W and the
feature dimension L . The anomaly features Fa and background
features Fb are extracted from F according to the sample label.
Specifically, we decrease the hypersphere radiuses enclosing
the anomaly and background features and also increase their
center margin.

Given Fa , its hypersphere center ca ∈ RL can be computed
as the mean value along the spatial dimension as in Eq. (11).

ca = mean f a, f a ∈ Fa (11)

To decrease the radius Ra in Eq. (12) while making the
hypersphere including Fa as much as possible, the hypersphere
optimization La

h for Fa is formulated as the minimization
problem in Eq. (13). The optimization Lb

h for Fb can be
obtained in the similar way.

R2
a = mean

f a∈Fa
(
∥∥ f a − ca

∥∥2
) (12)

La
h = R2

a + β mean
fa∈Fa

(max{∥ fa − ca∥
2
− R2

a, 0}) (13)

La
h and Lb

h make the corresponding hyperspheres compact
and the hypersphere centers can represent the overall feature
distribution in a certain extent. With the constraints of La

h and
Lb

h , the feature level loss L f enlarges the ranking margin of Fa
and Fb by increasing the distance of the anomaly hypersphere
center ca and the background hypersphere center cb. The L f
is formulated in Eq. (14). Since the three terms have the
same order of magnitude and importance, the loss ratio is
set 1:1:1.

L f = −∥cb − ca∥
2
+ La

h + Lb
h (14)

In total, the pixel-level loss L p and the feature-level loss
L f work together for the large-margin score ranking target as
in Eq. (15) where the w controls the balance.

L = L p + wL f (15)

D. Anomaly Sample Simulation
Since the ADRS task is unsupervised while the large margin

condition mentioned above needs to be satisfied in labeled
samples, we propose the simulation strategy to generate the
paired anomaly samples. To simulate samples covering all the
remote sensing modalities, we simulate both the anomalies
in spectral domain and in spatial domain. Spectral anomalies
deviate from the surroundings with properties in both spectral
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Fig. 5. The designed workflow for the spatial anomaly simulation with high
spatial resolution images as input. We built an additional object bank with
over 650000 instances, where the objects from different images are randomly
selected and resized to preset area ranges to simulate the deviating ranking
relationship of A, B0 and B1.

and spatial aspects (e.g., the hyperspectral modality) while the
spatial anomalies deviate in the spatial properties only for the
modality with few channels (e.g., SAR) [4].

For the simulation of the spatial anomalies, the workflow is
designed with the large-scale iSAID dataset to provide the rich
spatial details. Fig. 5 shows the overall workflow. Since the
anomalies are always small in size, we simulate the large size
objects B0 of background B explicitly in addition to A to train
the model being aware of the object size. Thus, B = B0 +B1,
where B1 is the remaining background part. The input image
D is randomly selected from the iSAID dataset, serving as
the background B1. The anomaly tiny objects A and large
size objects B0 are both selected from the pre-built object
bank, which includes the 650,000 instances from the iSAID
dataset. The π operation separates the selected objects into
two groups (A and B0) and resizes them into the preset range
(Generally, the size of B0 is obviously larger than A). Since
A and B0 originally do not belong to the D and the B0 has an
obviously larger area than A, the desired ranking inequality
S(a ∈ A) > S(b0 ∈ B0) > S(b1 ∈ B1) can be assumed true.
Finally, the ϕ operation pastes the resized A and B0 into D,
and obtains the anomaly image Dai . The corresponding label
Dal can also be obtained.

For the simulation of the spectral anomalies (Hai , Hal),
we inherit the main workflow from the prior TDD model [27],
where the data argumentation technique of channel shuffling is
used to create the spectral deviation of anomalies. Fig. 6 shows
the simulation workflow. Given input hyperspectral patch H,
π∗ operation first randomly selects locations and obtains Hl
for generating A and B0 according to the preset area range.
The selected locations in Hl are then replaced by the corre-
sponding spectra in shuffled images (i.e., ϕ∗ operation). Since
A and B0 are violently shuffled in spectral dimension and B0
has a larger area than A, the ranking S(a ∈ A) > S(b0 ∈

B0) > S(b1 ∈ B1) can be assumed to be true in output Hcp
similar to the spatial anomaly simulation. To increase the shape
diversity, affine transformation is finally conducted to output
the (Hai , Hal). Three hyperspectral benchmarks (WHU-Hi-
LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu) [74]
are used to provide the input of the simulation workflow.

In total, the simulated anomaly samples can make the
learned S be optimized with the proposed large-margin
losses (Section III-C). According to the theorems proved in

Fig. 6. The designed workflow for the spectral anomaly simulation with
several hyperspectral benchmarks. We use channel shuffle operation to create
the spectral deviation relationship, and the simulated anomalies have smaller
size than spatial anomalies to better align with the practical situation.

Algorithm 1 UniADRS

Section III-B, once the trained S has achieved the large-margin
performance in the simulated samples, it can also detect
the unseen images of the different modalities and keep the
deviation inequality hold.

To show the overall workflow of proposed model, we have
provided a pseudo code in Algorithm 1 including both training
and testing stages.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

In this section, we describe how the proposed transferring
model was validated in five modalities, i.e., hyperspectral,
visible light, SAR, infrared, and low-light, to show its cross-
modal ability. The proposed model is named as the unified
anomaly detector in remote sensing (UniADRS). In this
section, the comparative experiments are firstly described with
other non-transferring models, which were trained separately
on each scene. Then, the model analysis results and the model
efficiency are also discussed.
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TABLE II
THE DETAILED INFORMATION OF CONSTRUCTED MULTI-MODAL DATASET FOR THE ADRS TASK

TABLE III
QUANTITATIVE RESULTS FOR THE HYPERSPECTRAL MODALITY, DOZENS OF SCENES IN WHU-HI PARK AND WHU-HI STATION

ARE EVALUATED TOGETHER

1) Constructed Multi-Modal Dataset: We built a
multi-modal dataset for the ADRS task, with hyperspectral,
visible light, SAR, infrared, and low-light modalities (as
detailed in Table II). The images in the dataset cover various
scenes, sensor types, and resolutions. All the test images
of five modalities were unseen at test stage to verify the
detector transferability. The 82 hyperspectral scenes were
collected from the Cri dataset [29] and the two large-scale
unmanned aerial vehicle (UAV)-borne datasets of WHU-Hi-
Park and WHU-Hi-Station [31]. For the low-light modality,
we first captured 50 scenes at night and then doubled this
by data augmentation to make the overall size balanced. The
multi-modal dataset will be made publicly available.

2) Comparison Methods and Evaluation Metrics: Due to
the property of the high spectral resolution, the hyperspectral
modality has many unique models and was considered sepa-
rately from the other modalities.

The comparative models for the hyperspectral modality
were the global RX detector (GRX) [15], the abundance-
and dictionary-based low-rank decomposition (ADLR) detec-
tor [75], the collaborative representation based (CRD)
detector [20], the spectral constraint autoencoder (SC_AAE)
detector [23], the deep low-rank prior based detector (DeepLR)
[31], and the TDD method [27]. The comparison methods
cover the three categories of statistical-based, representation-
based, and deep learning based methods.

The comparative models for the remaining four modal-
ities were GRX [50], a convolutional autoencoder (CAE)
[76], a variational autoencoder (VAE) [77], the saliency-based

method proposed by Cai et al [41] and an adversarial
autoencoder (AAE) [21]. The implementation of these meth-
ods was adapted from the related ADRS studies [21], [41],
[50], [77]. Besides, we also compared UniADRS with the
state-of-art industrial anomaly detection model UniAD [35].
To adapt the UniAD for the small objects in ADRS task,
the input size is increased from 224 to 1024. The remaining
settings are kept same as [35].

The detection performance is evaluated with multi-
parameter 3D receiver operating characteristic (3D ROC)
curves [78]. Compared to 2D ROC curves, the threshold
dimension is additionally considered and can provide more
comprehensive information. The used metrics are the widely
used AUC(D,F), the target detectability AUCTD, the back-
ground suppressibility AUCBS, and the overall detection
probability AUCODP. Each metric value is positively correlated
with the detection performance.

3) Implementation Details: The hyperparameters of the
comparative hyperspectral models are set following [27]. The
CAE architecture was Unet with a ResNet50 backbone. For
the SAR modality, speckle removal was conducted before
applying the AAE method, following [21]. When simulating
the spectral anomalies, we controlled the A area in ratio range
[0.0064, 0.0225] and B0 in range [0.0225, 0.5]. Similarly,
we controlled the A in the range [0.02, 0.06] and B0 in range
[0.06, 0.5] for simulated spatial anomalies. The feature-level
optimization loss and the pixel-level loss were added at a ratio
of w = 0.1. The UniADRS was optimized with the Adam
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TABLE IV
QUANTITATIVE RESULTS FOR THE VISIBLE LIGHT, SAR, INFRARED, AND LOW-LIGHT MODALITIES

Fig. 7. Typical anomaly detection results for the hyperspectral modality, where the anomalies include rocks (first row), fabric camouflage objects (second
row) and metal objects (second row).

optimizer (learning rate 0.01, weight decay 1e−5, batch size
1) over 100 epochs.

At test stage, we use the trained UniADRS on unseen
images without any further fine-tuning. Spectral stem is used
for hyperspectral modality and spatial stem for visible light,
SAR, infrared and low-light modalities. We use the channel
processing technique from [27] to deal with the varying
channels of hyperspectral modality. Specifically, the image
channels of various spectral datasets are interpolated into
270 at training stage, where 270 is the largest number of
channels in existing anomaly detection datasets (WHU-Hi
Station [31]). Interpolation operation is applied to spatial
anomalies as well. Overlap technique is also used to process
large images [27], Overlap technique is also used to process
large images [27], where we set patch size 50 for hyperspectral
modality and 100 for other modalities. All the patches are
resized to the same size of 224 for unified processing. The
sensitivity analysis about the inferring patch size is reported
in Section IV-C.5. The CPU was an Intel(R) Xeon(R) Gold
5218R CPU @ 2.10 GHz with 251 GB memory, and the GPU
was a NVIDIA GeForce RTX 4090 with 24 GB memory.

B. Comparison Results

In all the five modalities, proposed UniADRS inferred
the test images directly while the comparative models were
retrained for each image. The quantitative results are reported

in Table III and Table IV. Fig. 7-11 visualizes the obtained
anomaly maps on five modalities, respectively.

1) Hyperspectral Modality: In Table III, UniADRS is the
only model that achieves an AUC(D,F) metric score of higher
than 0.97 and an AUCODP metric score of higher than 1.35 on
all three datasets (82 hyperspectral scenes).Although the TDD
model shows satisfactory transferability on the Cri dataset, the
metric scores drop dramatically on the UAV-borne WHU-Hi
Park and Station datasets (AUC(D,F)0.67 and 0.71, respec-
tively). Despite the tiny anomaly sizes (especially the second
example in Fig. 7), the obtained anomaly map of UniADRS
has the best discriminability.

2) Visible Light Modality: Table IV(a) reports the related
results. UniADRS achieves the best performance under the
AUC(D,F) and AUCBS metrics. Proposed model and UniAD
are the only two models with an AUC(D,F) score of higher
than 0.80. Although the AUCTD score of our model is lower
than that of GRX, this could be improved with a simple
post-processing of image stretching. In Fig. 8, the first sample
is inconspicuous and many detectors fail to find it. The second
scene comes from the Russo-Ukrainian War, where a Russia
tank is hiding and a Ukrainian UAV attempted to blow up.
Many of the methods correctly locate the anomalies in this
scene, but with an incomplete shape. In contrast, UniADRS
achieves the best tradeoff between detection completeness and
false alarms.
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Fig. 8. Typical anomaly detection results for the visible light modality, where the anomalies include the camouflage net (first row), a tank and a drone
(second row).

Fig. 9. Typical anomaly detection results for the SAR modality, where the anomalies include various ships.

3) SAR Modality: Table IV(b) reports the related results.
The detection on SAR modality is relatively easy for most
of the SAR scenes, because the anomalies (i.e., ships) lie in
a homogeneous sea background. Most models can achieve
the AUC(D,F) higher than 0.85. Similar to the visible light
modality, proposed model surpasses the second-place UniAD
by around 4 points on AUC(D,F) metric. For the examples in
Fig. 9, many models fail to process the speckle noise and
the obtained anomaly maps are full of salt-and-pepper noise
such as the GRX, VAE and AAE. Since our large-margin
learning has seen many spatial anomalies and learned the
context modeling ability, proposed model can suppress most
noises successfully.

4) Infrared Modality: Table IV(c) reports the related results.
Proposed model achieves the highest AUC(D,F) score of 0.94,
which surpasses the supervised result 0.91 in [39], even when
inferred directly. In Fig. 10, the anomalies in first example are
extremely tiny and many model fails to detect it. The second
example has 6 anomalies in total. In manual interpretation,
only 2-3 anomalies can be seen in many comparative anomaly
maps while our anomaly map can find 5 anomalies easily.

5) Low-Light Modality: Table IV(d) reports the related
results. The captured low-light dataset seems more chal-
lenging than the remaining modalities due to the night
environment. Many models achieve AUC(D,F) lower than
0.70 while our model can still get the optimal result 0.84,
showing a robust transferring ability. Due to the camouflage
property of given examples in Fig. 11, proposed model is the
only to locate the anomaly with discriminative boundary and
high confidence.

C. Model Analysis
1) Ablation of the Model Optimization: Pixel-level and

feature-level optimization are proposed for the large-margin
deviation ranking target. To show the superiority, we compared

it with prior ranking losses (proxy cross-entropy [71] and the
average precision ranking [72]), large margin losses (sigmoid
and hinge losses) [73] and the proposed pixel-level loss only.
We integrate the large-margin losses into our differentiable
AUC framework for fair comparison. Table V reports the
related results. The results with different large-margin surro-
gate losses show better performance than the average precision
ranking, which are consistent with our proven Theorem 1.
Although cross-entropy loss is designed originally for the
classification task, it has shown strong robustness for our
deviation ranking task. Benefiting from considering both the
ranking margin and the rationality of the threshold, proposed
pixel-level loss has achieved the best transferring performance
than the prior ranking losses and large-margin losses. Optimiz-
ing the model with pixel-level and feature-level losses together,
the average AUC(D,F) performance is promoted further from
0.9293 to 0.9416.

2) Statistics of the Cover Radius δ: As proven in the
Theorem. 1, the cover radius δ measures the difference of
simulated labeled samples and the unseen samples at the test
stage, which is positively related with the demanded lowest
margin in labeled samples for the transferring ability. The
quantitative results in Section IV-B have already shown the
model meets the lowest margin demand in simulated samples
and achieve transferring ability. We analyze the δ further in this
section to show the learned representative distance of different
modalities.

For each pixel of unseen images, its δ is the smallest radius
with the same kind of pixels (anomaly or background) in
simulated samples. For each test modality, the modality δ is
treated as the max δ of all the pixels (defined in Theorem 1).
The radius is computed with the corresponding Euclidean
distance in the feature space of F (defined in Section III-C).
We report the resulting δ with different number of simulated
images (20, 40, 60, 80), and each result is repeated four times
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Fig. 10. Typical anomaly detection results for the infrared modality, where the anomalies include the plane (first row) and peoples (second row).

Fig. 11. Typical anomaly detection results for the low-light modality, where the anomalies include a toy plane (first row) a toy tank (second row).

TABLE V
ABLATION RESULTS FOR THE DESIGNED MODEL OPTIMIZATION LOSS

Fig. 12. The statistical radius δ between the simulated anomaly images and
the unseen test images. Since the max radius value for the activated feature
is in range [0, 64], the low radiuses in [2.6, 3.0] imply a low margin demand
in simulated samples and the high transferring robustness.

to compute the mean (represented in broken line) and standard
deviation ((represented in color block).

In the results of all the five modalities (Fig. 12), our model
has obtained similar representation between the simulated
images and the unseen test images, where the radius δ is lower
than 3.0. Since the feature dimension of F is 64 in practice and
the radius range is between [0, 64] after the sigmoid activation.

The radius 3.0 is very small compared the max value 64.
As the selected image number grows, closer representation
may appear and the resulting δ decreases in many modalities
(e.g., visible light and SAR). The low δ value implies the low
margin demand in simulated samples and the high transferring
robustness.

3) Ablation of the Sample Simulation Strategy: For the
proposed UniADRS model, we simulate both the spectral
anomalies and spatial anomalies, where the background, large
normal objects, and anomalies are explicitly modeled. With the
simulated samples, UniADRS can be trained with the designed
large margin losses. The prior qualitative comparing results
have shown that the explicit model for large normal objects
B0 can decrease the false alarms effectively.

We conducted the ablation experiments from two aspects:
whether to simulate the large normal objects B0 and whether
to simulate both kinds of anomalies. The related results are
shown in Table VI. It is worth noting that when there is
only spectral anomaly at training stage, all test modalities
are processed by the trained spectral stem, and when there
is only spatial anomaly, they are all processed by the spatial
stem similarly. Comparing row 1 with row 2, and row 3 with
row 4, it is clear that the B0 simulation can bring a stable gain
in most modalities especially for the hyperspectral (7 points)
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TABLE VI
ABLATION RESULTS FOR THE DESIGNED ANOMALY SAMPLE SIMULATION STRATEGY

Fig. 13. The statistical cosine similarity between the simulated anomaly
spectra and the background. Most spectra are in range [0.5, 0.9], which shows
a weak spectra difference and high detection difficulty.

and the visible light (9 points) modalities. For the infrared and
low-light modalities, the increase is relatively lower (around
4 points). We deduce that the gain obtained from the B0
simulation is positively correlated with the scene complexity.
Comparing the results of using spectral anomalies or spatial
anomalies only, the spatial anomaly simulation can result in
a more robust performance in most modalities, regardless of
the B0 simulation. The inclusion of the spatial and spectral
anomalies helps the detector to better fuse both the spatial
and spectral features.

4) Difficulty of the Simulated Spectral Anomalies: Channel
shuffling operation is used to decrease the spectral correlation
of simulated anomalies and the background. Generally, the
higher the correlation, the greater the detection difficulty.
To quantitatively analyze the sample difficulty, we use the
cosine similarity to compute the correlation degree.

Fig. 13 shows the statistical results from over 10000 spectral
anomalies. For each simulated anomaly spectrum, we recorded
the cosine distance between it and the surrounding back-
ground. The resulting statistical distribution is not uniform,
where most results lie at the range from 0.5 to 1.0 and the
peak value appears around the 0.8, implying a high correlation
and detection difficulty. From this perspective, the simulated
spectral samples are hard examples, which helps the learned
model be more robust for the unseen anomalies.

5) Sensitivity Analyses: UniADRS is trained to be a devia-
tion metric with designed large-margin ranking losses, where
pixel-level and feature-level losses are weighted together with
w to supervise the model. To report the related sensitivity
analysis, we varied the w from 0.01 to 1.0 and observed the
corresponding accuracy in five test modalities. The results
are reported in Fig. 14. The changing of w has an obvious
effect on all the modalities, which can cause a maximum

Fig. 14. The sensitivity analysis about the loss weighted parameter w, where
most modalities achieve the best accuracy at the w 0.1.

Fig. 15. The sensitivity analysis about the inferring patch size, where
proposed model is robust to the changes with a maximum difference of 1 point.

difference of 6 points in accuracy. It implies that feature-level
and pixel-level optimizations may not be entirely consistent
and require some designed reconciliation. Except for SAR, all
other modalities achieve the best accuracy at the w 0.1, which
is finally chosen as the default setting.

At the test stage, we use overlap setting to improve the
performance, where each image is inferred in overlapped
patches. Fig. 15 reports the related sensitivity analysis about
the inferring patch size. The results show that proposed
model is robust to inference sizes, causing at most a 1-point
difference. From the perspective of best accuracy, the optimal
size for the hyperspectral modality is 50 and 100 for other
modalities.

D. Model Efficiency
One of the great advantages of the proposed UniADRS

model is the elimination of training for each unseen image.
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TABLE VII
EFFICIENCY COMPARISON FOR THE HYPERSPECTRAL MODALITY

TABLE VIII
EFFICIENCY COMPARISON FOR THE VISIBLE LIGHT, SAR, INFRARED, AND

LOW-LIGHT MODALITIES

In this section, the efficiency of UniADRS is investigated by
computing the model processing time for each modality.

Table VII lists the recorded processing times for the hyper-
spectral modality. Since the comparative models belong to
transductive models and need to be trained with test images,
their recorded processing times include both the training and
testing stages. In contrast, proposed model can infer the
unseen test modalities directly and the recorded processing
time includes the testing time only. The current state-of-the-art
model of DeepLR needs around 3 and 4 hours for the WHU-Hi
Park and WHU-Hi Station datasets, respectively. Although
TDD can deal with the WHU-Hi scenes in less than 2 min, the
accuracy is not satisfactory, as shown in Table III. Keeping the
highest accuracy performance, the proposed UniADRS model
can process the scenes faster than the representation-based and
deep learning based methods, and the time is closer to that of
GRX.

Table VIII lists the recorded processing times for the
remaining four modalities without spectral information. Pro-
posed UniADRS model has surpassed all the comparative deep
models by at least an order of magnitude, and achieved closer
performance with GRX. Low-light modality is a special case,
where GRX takes more time than proposed model due to
its large image size (2048 × 2048 in Table II). Given the
same image size, GRX processes the image pixel-by-pixel with
CPU while proposed model can utilize the parallel computing
capability of the GPU and constitute a batch for a single
forward propagation.

The obtained results fully prove the real-time performance
of UniADRS, and its ability to process large-scale hyperspec-
tral scenes in real time.

V. CONCLUSION

In this study, we designed a transferring anomaly detec-
tor for different remote sensing modalities by transferring

the learning target from certain image distribution to the
image-independent deviation metric. To guide the learning of
deviation metric, we firstly theoretically prove that although
the cross-modality images are unseen at training stage, once
the learned metric can rank the training samples with a
large margin, it can rank the deviation score of unseen
anomalies and background correctly. To satisfy the condition,
we instantiate the deviation metric as a learned model and
optimize it with proposed pixel-level and feature-level large-
margin losses. The pixel-level loss is derived directly from
the classical ranking metric AUC, where the discrete zero-one
loss is replaced with the designed differentiable log loss. The
feature-level loss optimizes the deviation ranking of extracted
features in an equivalent way, which enlarges the distance
of the enclosing hypersphere centers between the anomaly
and background features. With simulated anomalies, both
pixel-level and feature-level optimization work together to
learn the transferring deviation metric, which is validated with
five remote sensing modalities.

Focusing on the deviation learning target, this study instan-
tiates the learnable deviation metric with a simple multi-scale
convolutional network. Some potentially useful technologies
such as transformer block, large-scale self-supervising are not
used. Besides, feature-level and pixel-level ranking losses were
found not to be completely mutually beneficial at the training
stage (as in Fig. 14), implying the simple weighting method
can be further improved.

UniADRS has unified the anomaly detection task for dif-
ferent modalities. Despite this, anomaly detection is the first
step to extract the potential targets and the detectors cannot
distinguish between real anomalies and detections that are
not of interest. The latter recognition step is necessary for
practical application [33]. To date, few studies have tried
to combine the tasks and construct a complete detection
and recognition pipeline. Leveraging the zero-shot anomaly
detection ability of UniADRS and the zero-shot recognition
ability of many foundation models to construct the complete
“detection-recognition” pipeline is our next goal.
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